
HOCHSCHULE DARMSTADT
Fachbereich Informatik

Peer-to-peer gaming on the
Bitcoin Blockchain

Abschlussarbeit zur Erlangung des akademischen Grades
Master of Science (M.Sc.)

vorgelegt von:
Felix Schuchmann

Referent:
Korreferent:

Prof. Dr. Moore, Ronald Charles

M.Sc. Reuschling, Nicolai

Constantin

Ausgabedatum:

Abgabedatum:

05.04.2016

05.10.2016

https://www.h-da.de/
https://www.fbi.h-da.de/
http://www.felixschuchmann.de
https://www.fbi.h-da.de/organisation/personen/moore-ronald.html
https://www.fbi.h-da.de/organisation/personen/reuschling-nicolai.html
https://www.fbi.h-da.de/organisation/personen/reuschling-nicolai.html

iii

Eidesstattliche Erklärung
Ich versichere hiermit, dass ich die vorliegende Arbeit „Peer-to-peer
gaming on the Bitcoin Blockchain“ selbständig verfasst und keine an-
deren als die im Literaturverzeichnis angegebenen Quellen benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlich-
ten oder noch nicht veröffentlichten Quellen entnommen sind, sind
als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen
in dieser Arbeit sind von mir selbst erstellt worden oder mit einem
entsprechenden Quellennachweis versehen. Diese Arbeit ist in glei-
cher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde
eingereicht worden.

Unterschrift:

Darmstadt, den :

v

HOCHSCHULE DARMSTADT
Fachbereich Informatik

Zusammenfassung
Master of Science (M.Sc.)

Peer-to-peer gaming on the Bitcoin Blockchain

von Felix Schuchmann

Inhalt dieser Arbeit ist die technische Konzeption und Entwick-
lung einer peer-to-peer Anwendung zwischen anonymen Personen
mit finanzieller Motivation und ohne Vertrauensbasis. Die Bitcoin
Blockchain Technologie wird als anonyme Kommunikationsebene be-
nutzt und smart contracts als Grundlage für das Vertrauen auf finan-
zieller Ebene.

Als Machbarkeitsstudie ist ein kleines zwei Spieler GO-Spiel im-
plementiert. Dieses Spiel veröffentlicht keine Identifikation der Spie-
ler und benutzt zu keiner Zeit eine direkte Verbindung zwischen die-
sen. Gleichsam benutzt es keine zentralisierte Server-Instanz. Jegli-
che Kommunikation, für alle Aktionen in dem Spiel werden über das
Bitcoin peer-to-peer Netzwerk abgewickelt. Die Gewinneinsätze zum
Spielen werden über die crypto-Währung Bitcoin bezahlt und die
möglichen Gewinne per smart contract ausgeschüttet. Dieses System
ermöglicht völlige Anonymität der Spieler und verhindert gleichzei-
tig Engpässe, die beim Einsatz von einer Client-Server-Architektur
anfallen würden. Zeitgleich eliminiert es die Notwendigkeit von Ver-
trauen in allen Bereichen.

Im Bereich dieser Arbeit werden diverse Methoden von verschie-
denen, aktuellen Blockchain-Technologien, wie Ethereum oder Light-
ning Network besprochen. Diese Konzepte sind noch sehr jung und
teilweise noch nicht umgesetzt. Deren Vor- und Nachteile kamen bei
der Implementierung des GO-Spiels zum Tageslicht.

Es wird gesagt, dass die Zukunft dieser Technologie nicht nur die
Fähigkeit hat, das Finanzsystem zu revolutionieren - wie man es Bit-
coin nachsagt - sondern auch in anderen Gebieten zu einer digitalen
Transformation führen kann.

HTTPS://WWW.H-DA.DE/
https://www.fbi.h-da.de/

vii

HOCHSCHULE DARMSTADT
Fachbereich Informatik

Abstract
Master of Science (M.Sc.)

Peer-to-peer gaming on the Bitcoin Blockchain

by Felix Schuchmann

Content present in this thesis is the technical concept and devel-
opment of a decentralized peer-to-peer application between anony-
mous persons with a financial motivation and no confidence base.
The Bitcoin Blockchain technology is used as an anonymous commu-
nication layer with smart contracts handling the financial foundation
of trust.

As proof of concept, a little game of GO for up to two players is
implemented. The game does not reveal the identity of any player,
nor does it ever use a direct connection between them, as well as a
centralized server instance. Communication for every game action
is made over the peer-to-peer Bitcoin network. The fees to play the
game are paid with the Bitcoin cryptocurrency and the winnings are
distributed with the use of smart contract systems. This guarantees
absolute anonymity and avoids a bottlenecked server between many
clients whilst eliminating the need of trust from the parts involved.

Within the scope of this thesis, different methods of current Block-
chain based technologies, such as Ethereum and Lightning Network,
are discussed. These, still very young or not yet readily implemented
concepts, have their assets and drawbacks, which were revealed dur-
ing the development of the GO game.

It is argued that the future lookout of this technology has the
power to not only revolutionize the monetary system - as it is stated
with Bitcoin - but also lead to a much bigger digital transformation.

HTTPS://WWW.H-DA.DE/
https://www.fbi.h-da.de/

ix

Acknowledgements
I want to thank all those people, who made this thesis and my stud-
ies possible. I especially want to thank the whole JIM-team at the
Hochschule Darmstadt and the international-team at the James Cook
University Australia, who all made it possible for me to do my master
degree with a abroad experience in Australia.

Additionally, I want to thank:

My girlfriend Jana Wieland, who supports my decision and helped
me during stressful phases.

Philip Park who has helped me with some of the graphics.

Gabriel Lucas Cavalcanti for proofreading.

Mat Bell for his open source tool bitcoin-net.

Satoshi Nakamoto and every developer behind Bitcoin for this great
invention.

“It’s very attractive to the libertarian viewpoint if we can explain it prop-
erly.
I’m better with code than with words though.”

Satoshi Nakamoto, 11/14/2008

xi

Contents

Eidesstattliche Erklärung iii

Zusammenfassung v

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose . 2
1.3 Structure . 3

2 Basics 5
2.1 Important cryptographic basics 5

2.1.1 Hashing . 5
2.1.2 Public key encryption 6

2.2 What is Bitcoin? . 7
2.2.1 Properties of money 7
2.2.2 From Bitcoin to the Blockchain database 10

2.3 Technical background of Bitcoin 10
2.3.1 Bitcoin wallets and addresses 10
2.3.2 Multisig Addresses 11
2.3.3 Transactions and nodes 12
2.3.4 Mining . 14
2.3.5 Summary of the Bitcoin workflow 15

2.4 What is the Blockchain? 16
2.4.1 Data in the Blockchain 17
2.4.2 Different types of Blockchains/altcoins 18
2.4.3 Closed Blockchain 18
2.4.4 Open Blockchain 19
2.4.5 Namecoin . 20
2.4.6 Ethereum . 20

xii

2.5 Smart contracts . 21
2.5.1 Practical example 1: .bit domain in Namecoin . 23
2.5.2 Practical example 2: lent out photo equipment . 23
2.5.3 Nowadays interest in smart contracts 24

3 Game presentation and user flow 25
3.1 A game of GO . 25

3.1.1 Visiting the website 26
3.1.2 Game start . 28
3.1.3 Transmitting moves 30
3.1.4 Listening to live moves 31
3.1.5 Replaying a game 32
3.1.6 End of game . 32

3.2 Legal aspects . 33

4 Implementation 35
4.1 Application structure . 35

4.1.1 Angular communication between services . . . 36
4.1.2 Client communication with nodes 38

4.2 Different communication stages 39
4.2.1 Live . 39
4.2.2 Blockchain . 39
4.2.3 Mempool . 40

4.3 Description of program code 41
4.3.1 bitcoinNode . 41
4.3.2 walletService . 45
4.3.3 gameService . 49
4.3.4 gameController 54

4.4 Smart contract . 55

5 Results, problems and future lookouts 57
5.1 Problems . 57

5.1.1 Endgame smart contract 57
5.1.2 Open source tools bitcoin-net and bitcoinjs-lib . 59
5.1.3 Double scanning 59
5.1.4 Back to an API solution? 60

5.2 Future lookout . 61
5.2.1 Lightning network 61
5.2.2 Segregated Witness 65

xiii

6 Conclusion 67
6.1 Conclusion . 67
6.2 Final thoughts . 68

xv

List of Figures

2.1 properties of money . 7
2.2 Example transaction . 12
2.3 GPU mining RIG . 15
2.4 total hashrate graph . 16
2.5 Bitcoin Network . 17
2.6 smart contracts model 22

3.1 game menu . 27
3.2 Elliptic Curves . 27
3.3 Game screen . 28
3.4 Sample start transaction 29
3.5 Sequence diagram start game 30
3.6 Running game . 31
3.7 Sample move transaction 31
3.8 Sequence diagram move game 32
3.9 Sequence diagram end game 33

4.1 merkle tree . 42

5.1 Lightning Network . 64
5.2 Node Versions . 66

xvii

List of Abbreviations

ASIC Application-specific integrated circuit
FPGA Field-programmable gate array

BTC Bitcoin as the currency, e.g. 0.5 BTC
ETH Ethereum as the currency
NMC Namecoin as the currency

RSA Rivest, Shamir and Adleman
ECDSA Elliptic Curve Digital Signature Algorithm

SegWit Segregated Witness
UTXO Unspent Transaction Output

MH/s MegaHashes per second
TH/s TeraHashes per second
PH/s PetaHashes per second

xix

List of Symbols

B bitcoin 1.00000000B

1

Chapter 1

Introduction

Today, more and more business models are subject to change in the
process of digital transformation. Many (business) processes shift
from traditional, physical models to digital ones. Of these, many be-
come automated and autonomous. Machines start to communicate
and trade information with each other, but still, trust is a major factor
for most of these centralized structures.

The Blockchain technology is a recurring topic on many current
news outlets. It claims to solve the problem of establishing trust
between two or more business partners while still maintaining the
anonymity provided by the Internet. Smart contracts based on au-
tonomous agents that replace a notary are finally not only a theoreti-
cal concept. But, what exactly lies behind this new technology? Can
it be used in a practical manner? Would it possible for two anony-
mous persons to play a game against each other, where the rewards
are a form of money, without trusting one another, or using a third
party for the communication and safekeeping of their funds?

This thesis aims to answer those questions by implementing a
simple game of GO based on Bitcoin and Blockchain technologies.
Smart contracts will then handle the bets each player make.

1.1 Motivation

Whenever an online transaction has a financial background, be it an
auction, gambling, providing a service, digital goods, or any other
business interaction between anonymous parties, a major technical
effort is necessary to maintain the network’s trust and security. For

2 Chapter 1. Introduction

instance, when you sell a product to an individual over the Inter-
net, you have to trust that the payment will not result in a charge-
back, or that it does not originate from a compromised PayPal ac-
count, or even a stolen credit card. The buyer is often required an
additional effort in order to verify their identity, either by upload-
ing personal information, performing a postident, or in some cases,
providing documentation directly to the seller. However, the mer-
chant also has to be trusted with the delivery of the product. This
relationship is generally ensured by a company charged with mak-
ing the interaction possible, but a great deal of manual input is still
necessary should a situation arise. The company is also entrusted
with sensitive information such as credit card details, in turn mak-
ing it a possible target for hacker attacks. Data leakage can compro-
mise a company’s image, potentially turning customers away due to
distrust. From a technical perspective, there is no guarantee that an
expanding software will be utterly secure.

The (Bitcoin) Blockchain allows data transmission over a decen-
tralized network with thousands of peer-to-peer connected nodes.
The protocol is open and comprehensible to everyone. Data can be
transmitted from one person to thousands around the world without
any centralized servers in between. Would it be possible to use this
network for a project without having the well known drawbacks of
centralized trust systems, servers, or current peer-to-peer networks?

1.2 Purpose

In this thesis, the possibility to use Blockchain – a relatively young
technology – will be tested by developing a small peer-to-peer game
for two players. A game is chosen as it presents a constant, bidirec-
tional communication between two persons and the result is defined
by a replicable goal.

The Bitcoin Blockchain currently only exists for its financial net-
work, but many technology sectors research how to use if for their
own applications. Plenty of these sectors have theoretical concepts,
but not many, if any, practical working samples. One such sample is
the resulting game of GO presented at the conclusion of this thesis.

1.3. Structure 3

1.3 Structure

In chapter 2 the basics of new Blockchain technologies are explained
to give an understanding of the work that follows. Chapter 3 ex-
plains the game as a sample by using the techniques established on
2. 4 details implementation, how the application is structured, how
communication happens within it (and with Blockchain), and how
the smart contracts work. Finally, chapter 5 presents the project re-
sults as well as a conclusion and a further perspective on the matter.

5

Chapter 2

Basics

2.1 Important cryptographic basics

Although this thesis is meant for people experienced in informa-
tion technology, I will explain some basics upon which the following
techniques are based on. These are just crude explanations, but also
the fundamentals to understanding the further structures.

2.1.1 Hashing

Hashing is a one way function that is often used in cryptographic
context. Its goal is to take a string and mutate it into a non-reversible
(usually shorter) string that represents the input. For example, one
could take the first letter of each word in a sentence to generate this
sentence’s hash. When the sentence is sent over an unsafe communi-
cation channel and its hash over another, the receiver can check if the
words in question still being with the same letters. If someone inter-
cepting the message changes the sentence, they would have to make
it match these letters. In detail, hashes are a lot more complex than
the example and result in lesser collisions (generating the same hash
twice with different input). They are generally used to save pass-
words for websites, so that if the website is hacked, no one could
reconstruct the original password out of the hash.

In the next chapters, hashes are often based on the sha256 and
ripmd160 algorithms. These hashes produce outputs of a fixed length
of 256 or 160 characters and are popularly used and checked by many
specialists for security purposes. They are considered safe.

6 Chapter 2. Basics

2.1.2 Public key encryption

Public key encryption, or asymmetric encryption, is a widely used cryp-
tographic procedure. A random number is used to generate a public
and a private pair of keys. The private key is stored in a secret envi-
ronment and used to decrypt or sign data. The public key is used to
encrypt data or check the signatures for validation.

For this thesis, the signing part is more important than the en-
cryption procedures. For instance, someone takes a message and
uses their private key to generate a signature for the same. The data
is sent with the unencrypted message to the receiver, who can use
the public key to check with the inverse function the validity of the
signature of the message, then claiming ownership over those.

Mostly RSA (named after its inventors Rivest, Shamir and Adel-
man [Mol02, p. 61]) is used as a well established asymmetric en-
cryption. Its history goes back to 1974-1975 to Whitfied Diffie, Mar-
tin Hellman from Stanford and Ralph Merkle from Berkley [Mol02,
p. 50]. But, for the cryptography behind Bitcoin, Satoshi Nakamoto
chose to use Elliptic Curve Digital Signature Algorithm (ECDSA) over
RSA. ECDSA compared to RSA uses less computation and data stor-
age for its keys by maintaining the same security level [Sob+08,
p. 488], making it the best choice for a peer to peer protocol that needs
to store and transmit all data, as seen in the next chapters.

2.2. What is Bitcoin? 7

2.2 What is Bitcoin?

Bitcoin is a peer-to-peer electronic cash system founded by Satoshi
Nakamoto in 2008. [Nak08] This system is designed to fit all funda-
mental properties of money and has many benefits over existing cur-
rencies. Those properties and the benefit of Bitcoin and its underly-
ing technologies are explained in the next sections. The combination
of this currency with its financial worth and the technology behind it
brings possibilities that have never existed with any previous digital
system.

2.2.1 Properties of money

Any mankind used monetary system needs to have some fundamen-
tal properties. Those are explained in the following, detailed list to-
gether with a comparison of Gold, common (paper) money and cryp-
tocurrencies like Bitcoin. This should emphasize the benefits of this
new sort of money as a basis for its later usage as a combination of
economics and technical aspects.

FIGURE 2.1: fundamental properties of money

Source: http://www.maxkeiser.com/2016/07/
how-bitcoin-is-slowly-replacing-fiat-currencies/

• Fungible: A currency needs to be fungible, which means that it
can be mutually replaced. For example, one ounce of any pure

http://www.maxkeiser.com/2016/07/how-bitcoin-is-slowly-replacing-fiat-currencies/
http://www.maxkeiser.com/2016/07/how-bitcoin-is-slowly-replacing-fiat-currencies/

8 Chapter 2. Basics

element, like gold, is equivalent to any other existing ounce of
the same element. Gold is fungible. One American Dollar or
any other Fiat currency (from the latin, "let it become") can be
exchanged to any equivalent American Dollar. The same way,
one Bitcoin is also equivalent to any other Bitcoin.

• Non-consumable: One could exchange vegetables as a cur-
rency system, but once consumed they will cease to exist. All
known and good monetary systems is non-consumable. So is
Bitcoin. The tokens used in the Bitcoin system are only trans-
mitted, not being consumed in any way.

• Portability: A currency needs to be easily transported. This
becomes difficult with Gold due to its weight. Similarly, paper
money becomes heavy when a big amount is stacked. Bitcoins
are stored as a digital asset and can be ported on any digital
storage device, or over any connection.

• Durable: Gold cannot be easily destroyed. Paper money can be
lost forever relatively fast. 95% of all currencies nowadays are
digital and can survive for as long as the system behind them
exist. The same applied to Bitcoins. Once saved or backed up
properly, they can survive the test of time, not being worn out
or disappearing by itself.

• Highly Divisible: Here is one of Bitcoin’s biggest benefits: it
can be divided up to 8 digits behind the decimal point. As of
today, the smallest amount of Bitcoin (0.00000001), also known
as Satoshi, is worth $0.000005 EUR. This would be a unusable
amount of gold and is also difficult to imagine as Euros. One
Satoshi, on the other hand, can be used in a Bitcoin microtrans-
action as demonstrated later in the developed application.

• Secure: Counterfeits are an ever existing problem with physical
currencies, something the underlying cryptographic functions
of Bitcoin avert. The Bitcoin market capitalization is, now days,
worth $9,5 billion USD [Coi16] and has proven over the last 8
years that it is secure enough not to be hacked, not even once.
(Not to be mixed up with Bitcoin exchanges)

2.2. What is Bitcoin? 9

• Easy Transaction: It is difficult to store and transfer gold safely
enough, as it only exists as a physical good. Digital currencies,
such as Fiat and Bitcoin, can be exchanged between databases
with no geographical relation. Peer-to-peer exchanges can be
easily made with physical currencies, but also with Bitcoin if
both parties have access to the Internet or exchange the private
keys mentioned further ahead.

• Scarce: One of the biggest benefits of gold or Bitcoin over Fiat
money issued by the government is the scarcity, as Fiat is a hy-
per inflation currency that can be newly created without limita-
tions. Gold is finite, as well as hard to find and produce. Bitcoin
has a limited supply of digital coins. There will be 21 million
Bitcoins with a decreasing rate, generated in a process called
mining (explained in chapter 2.3.4) similar to gold digging.

• Sovereign: The reason why Fiat money still surpasses any other
type of currency is the government’s involvement, which is-
sues and backs it. Its volatility is expected low enough for it to
be used as a daily form of money. This is one of Bitcoin’s issues,
as its market value fluctuates by 20% or more within minutes
after the announcement of big news.

• Decentralized: The central control of gold or Fiat money is very
high. The banks and government control the existence and all
transferences in centralized vaults or databases. Bitcoin, as
a major opponent, is controlled by the later explained cryp-
tographic functions and the peer-to-peer network, with thou-
sands of independent persons behind it. No single person or
group can control this network. This will also be used as a main
reason of choice to base the later application on. The code for
Bitcoin’s related software is open source and as of today, devel-
oped by 400 contributors. [Laa+16]

• Smart: Bitcoin is the first monetary system that can be pro-
grammed and used to create the so called smart contracts. These
are contracts between two authorities that are handled only by
the underlying technology instead of a third party. Smart con-
tracts do not require one or more individuals to trust one an-
other.

10 Chapter 2. Basics

2.2.2 From Bitcoin to the Blockchain database

Now that we know why Bitcoin is this powerful when compared
to other types of currency, this leads to bigger possibilities that
the network behind it provides – and also why it can be used in
projects beyond its financial aspect. All funds in the Bitcoin network
are, as mentioned, stored in a decentralized database, the so called
Blockchain (further explained in 2.4). The Blockchain can be used to
store other types of data and the fact that the Bitcoin market cap is
big guarantees that the data is stored permanently with the backup
of 9,5 billion USD, also safe enough to be used for other high risk
projects.

2.3 Technical background of Bitcoin

The later explained basics behind Bitcoin are based on cryptographic
functions, mainly public and private keys used fo encryption/de-
cryption, hashing functions and proof of work. With this well known
mathematical methods, Satoshi Nakamoto created the first digital
decentralized currency that could exist without the control of an ex-
clusive authority, like other known currencies.

For this thesis it is important to understand the techniques behind
Bitcoin and how the protocol works. This will be further explained
in the next chapter.

2.3.1 Bitcoin wallets and addresses

When someone owns bitcoins, the currency is stored in the so called
Bitcoin wallet. A wallet is a simple file or document that saves the
access to one or more Bitcoin addresses. An address is a 26-35 char-
acter long string of numbers and letters, often depicted as a base58
string (for distinctiveness with no I, l, 0 and O) [Bit16a]. An address
can be generated offline and for free out of 2160 possibilities.

There is a website [Wal16] that demonstrates this number. It lists
(or better said generates on the fly) all possible addresses with 128
keys on one page. This results in a total of 904625697166532776746648
320380374280100293470930272690489102837043110636675 pages, an
amount of data no system could ever scan through.

2.3. Technical background of Bitcoin 11

All funds and transferences in the Bitcoin network are transmitted
from and to different addresses in a so called transaction.

Each Bitcoin address consists of two cryptographic keys, a private
and a public one. The private key is part of a users wallet and is
used to sign transactions to other addresses. A hash of the public
key is – alongside all transactions and the transmitted value – stored
in a "public database", known as Blockchain.

What follows are two sample addresses:
- 1CHdqa9caqvFBc9vRUxeVZZPJLBJDugTjZ
- 13NGQBtxjHiVTCDx93ySYX1gF4si93FuZR

The first byte (the number 1) represents the network and is always 1
for Bitcoin, n or m for Testnet, and capital L for Litecoin (a clone of
the Bitcoin system). The next 20 bytes are a ripemd160(sha256(<public
key>)) and the last 4 are the checksum with a sha256(sha256(<network
byte><previous 20 bytes>)). This function obfuscates the public key in
case there is any method to calculate the private key from it and also
verifies its format, being, with the checksum, an easy way to approve
the validity of the given address without the need of querying it in
the Blockchain.

2.3.2 Multisig Addresses

Addresses can also be generated with the combination of several pri-
vate keys. They are often called "XofY" addresses. For example,
a 2of3 address is generated by three different private keys and can
be signed using two of those. This can be used for a shared wal-
let with the ability to add more people to approve outgoing trans-
actions. A company with 4 stakeholders could setup a 3of4 address.
This address would have a single public key that could be used to re-
ceive funds for the company. If one stakeholder wishes to spend said
funds, they need at least 2 other colleagues to approve the transac-
tion. This can be, along other methods, used for the later explained
smart contracts.

12 Chapter 2. Basics

2.3.3 Transactions and nodes

Whenever funds are transfered, a user or system signs a transaction
with their private key(s) and transmits it to the Bitcoin peer-to-peer
network. This network consists of Bitcoin (full) nodes and Bitcoin min-
ers. The nodes in question are later used for the communication in
the developed application. A Bitcoin full node is a server that can be
setup by anyone and has access to the whole data (every public key
and every ever existing transaction) in the Bitcoin network. This data
takes 80GB of disk space at the time of this thesis, with 5100 existing
nodes [21.16a].

Each node creates a peer-to-peer connection to 8 other nodes, then
listens and transmits all transactions and saves them temporarily in
its memory, the so called mempool. It also verifies that the transactions
are of a valid format and have the right funds. A spending transaction
always has to be part of one or more incoming addresses and one or
more outgoing ones. It also has to consume all incoming funds in the
sum of all outgoing addresses.

FIGURE 2.2: Example for a transaction

Source: http://blockcypher.com

Every Bitcoin transaction is written as a Forth-like scripting lan-
guage [Ant14, p. 123]. Forth is a programming language from the
1970’s developed by Charles H. Moore, using a stack based memory
system and a reverse-polish notation. For instance, the calculation "2
+ 3 = 5" would be written "2 3 + 5 =". Every time a word (+-*/=) is
found in the dictionary, the function behind it is called and executes
the parameters it has read until that point as input parameters.

http://blockcypher.com

2.3. Technical background of Bitcoin 13

If Bitcoin words in that dictionary are, for example, OP_ADD and
OP_EQUAL, the resulting script from above would be "2 3 OP_ADD
5 OP_EQUAL", thus true.

Those scripts are stateless, meaning that all Bitcoin nodes have
full access to them. They can be read as a combination of locking and
unlocking parts, executed without any external information (state-
less) and finally, verify that the result is true.

There lies one difference from Bitcoin to the later explained Ether-
eum coin: Bitcoin transactions are Touring incomplete because they
do not implement loops or complex flow capabilities, while Ether-
eums added complexity do (as later seen in chapter 2.4.6).

Currently, the Bitcoin "livenet"-nodes only relay so called standard
transactions that only allow five different transaction types: Pay-to-
Public-Key-Hash (P2PKH), Public-Key, Multi-Signature (limited to
15 keys), Pay-to-Script-Hash (P2SH), and Data Output (OP_RETURN)
[Ant14, p. 128].

The most interesting transaction types are Pay-to-Public-Key-
Hash and the Data Output for this thesis.

The Pay-to-Public-Key-Hash transaction output looks like:

<signature> <Public Key>
OP_DUP OP_HASH160 <Receiver Key Hash> OP_EQUAL OP_CHECKSIG

The first row defines the script unlocking part that needs to be
set correctly to spend that transaction. The second row defines the
method used to fulfill that script together with the Bitcoin address.
This part of the script is called unspent transaction output or UTXO
and defines the funds in a user’s wallet. To be spent, the first part of
that formula needs to be fulfilled.

If a user wants to spend this UTXO, they sign the new transaction
output and the amount of bitcoins with their private key, generating
the signature. Then they add their full public key to that script for
further verification. The cryptography behind Bitcoin can then verify
that the sender is the legitimate creator of this transaction and can
check the signature against the previous key hash, then match the
new value with the previous transaction.

14 Chapter 2. Basics

OP_RETURN is the second transaction type that is required later
on. This is just a null data transaction which adds the possibility to
add custom data to the transaction. Currently, this is limited to 83
bytes.

Each transaction can combine one or many different scripts, mak-
ing it possible to send one transaction to many different destinations
at the same time, also adding one OP_RETURN type to a transaction
that transmits a value of bitcoins simultaneously.

2.3.4 Mining

Mathematically, every ten minutes a miner packs all transactions
from their nodes’ mempool into a block. This is done by creating a
sha265(sha265()) hash value of all transactions in this block plus the
hash of the last existing block and a nonce. The nonce is a random
number which the miner has to guess by using brute force techniques
so that the resulting hash starts with a given and adjustable number
of zeroes. Every 2016 blocks (or two weeks), the network adjusts the
number of zeroes to match the computing power in order to maintain
the ten minute interval.

Part of the protocol is also that the miner is allowed to generate
one new transaction (Coinbase transaction) with no input address
and an output value of XB , with X being initially 50B later halved ev-
ery 210,000 blocks (or four years), today worth 12,5B (or 6500 EUR).
This reward guarantees that enough miners try to solve this mathe-
matical brute force problem as a proof of work.

The big profit from mining with the rising value of Bitcoin lead
to a hardware race (specific for this end) which started in 2012 with
the mass using of graphic processing units (GPUs). Many private
people all around the world started to build mining rigs with up
to 6 GPUs on one mainboard (see Figure 2.3), resulting in a power-
ful machine that only calculated sha256 hashes by using the GPUs’
parallel shader architecture. At that time it was difficult to buy AMD
GPUs, as the most power efficient models were sold out immediately
to miners. AMD was chosen because it uses a different architecture
than Nvidia, with more shader units running at a lower clock speed.

2.3. Technical background of Bitcoin 15

FIGURE 2.3: GPU mining RIG

Source: http://blogerator.ru/page/
bitcoin-chast-2-kriptovaljuta-majning-zarabotok

Later on, companies started to reprogram FPGA processors, then
designing special ASIC chips to optimize the process of hashing. To-
day, there are high specialized 14nm ASIC chips (e.g. from Bitmain-
tech [Bit16e]) that are capable of generating 8.6TH/s with the same
power consumption of one of the older GPU rigs that only generated
under 1000 MH/s per GPU.

The Bitcoin network brute force power is, today, 1800 PHashe/s
(see Fig 2.4). Since no one can control so much computing power by
themselves, the network is decentralized all around the world, with
different private people and companies involved in mining.

2.3.5 Summary of the Bitcoin workflow

A user uses their Bitcoin wallet to hold their balance in form of ad-
dresses and their UTXOs. Then, they send transactions by signing
the UTXO with the use of public key encryption to full nodes, ad-
dressed to a receiving Bitcoin address. Those nodes verify all trans-
actions and relay them to other nodes in a peer-to-peer network. On
top of each node there may be a Bitcoin miner who packs all trans-
actions from the last ten minutes to a block by using a massive proof

http://blogerator.ru/page/bitcoin-chast-2-kriptovaljuta-majning-zarabotok
http://blogerator.ru/page/bitcoin-chast-2-kriptovaljuta-majning-zarabotok

16 Chapter 2. Basics

FIGURE 2.4: Graph of the total hashrate over time

Source: http://bitcoin.sipa.be/k

of work algorithm. This block is then again relayed to all other nodes.
All blocks together form the Blockchain, Bitcoin’s 80GB database that
is saved on each full node’s hard disk.

2.4 What is the Blockchain?

The Blockchain could be called Bitcoin’s database. It is a chain (merkle
tree) of all blocks that are mined, starting from the genesis block, the
first ever block created by Satoshi Nakamoto.

Because every new block has a hash of the last one, a chain is
arising. Whenever two miners generate a block at the same time,
or a miner generates a block with invalid transactions (may it be
faked transactions by the miner itself or transactions that already
have been spent), the "chain" forkes to a tree-like structure and the
miners choose what branch they will carry on mining. Being that
anyone can verify the data in the block to be valid or not, the ma-
jority of miners would choose the valid one. When the next block
is then found, the longest branch or chain wins the race. The trans-
actions that are bound to the orphaned block go back to the mempool
and are included in a later block. With the amount of work that is put

http://bitcoin.sipa.be/k

2.4. What is the Blockchain? 17

FIGURE 2.5: Bitcoin Network

Source: https://www.buybitcoinworldwide.
com/kb/what-is-bitcoin-mining/

into verifying and generating the blocks, it is guaranteed that a trans-
action is irreversible and forever valid after some correctly chained
blocks. This is defined as true after 6 blocks.

2.4.1 Data in the Blockchain

A special feature lays in the definition of transactions that are stored
in the Blockchain. Each transaction can hold a script opcode called
OP_RETURN that gives the ability to pack data after this return state-
ment. The default node relays transactions with up to 83 bytes of
data after the OP_RETURN. This makes the Blockchain usable as a
public decentralized database, which is - beside its financial value -
one of the most interesting things in the world of Bitcoin.

One example for using this Blockchain database could be a public
digital rights management (DRM) system: Whenever a media creator
wants to publish a photo, video or any other document they have
created on their own, they could generate a hash over this data and
transmits a transaction to the Bitcoin Network just before the pub-
lishing of the document. If another person wishes to prove that they
are the actual owner of this document, they could simply look up the
creator’s public address and the outgoing OP_RETURN transaction

https://www.buybitcoinworldwide.com/kb/what-is-bitcoin-mining/
https://www.buybitcoinworldwide.com/kb/what-is-bitcoin-mining/

18 Chapter 2. Basics

with the hash of the document. Using the unchangeable and decen-
tralized Blockchain for the proof of ownership guarantees that no cen-
tralized organization could manipulate the data. In the same effect it
is very cheap - if not even free - and easy to use this concept.

Today, many companies out of the financial (fintech), insurance,
or even energy sector try to use the Blockchain and especially smart
contracts over the Blockchain for similar processes.

2.4.2 Different types of Blockchains/altcoins

Due to the source-code of Bitcoin being publicly available, anyone
can copy and modify the system for their personal use. One of the
first such copies was the alternative coin (altcoin) named Litecoin.
Its hashing algorithm is based on scrypt instead of Bitcoin’s sha256.
Scrypt is a memory intense hashing algorithm that was developed to
cause brute force on special FPGAs or ASIC chips impossible. It is
used in Litecoin to decentralize the process of mining to normal PCs
instead of specialized companies with high developed ASIC chips.

Today, there are hundreds of altcoins with many different proto-
cols and approaches. But the biggest network by far is still Bitcoin.

If someone decides to use the Blockchain as a storage or transmit-
ting protocol, there are many more possibilities besides Bitcoin. The
next sections describe the differences of open and closed Blockchains.

2.4.3 Closed Blockchain

A closed or private Blockchain can be fully or half private. For exam-
ple, there could be public read permissions, but only a set of people
or a single company could write data to the Blockchain. This could
be done with a pre-mined amount of coins that is under the com-
pany’s control or a special logic that only allows private miners to
add blocks to this Blockchain.

Many fintech companies are today researching what can be done
and how to benefit from this technology, for instance, to handle the
stock market. Typical problems like race conditions in the balance of
a wallet (double spents) that require locking mechanisms, if multiple
instances try to access the same data, do not exist in the Blockchain
because every transaction is unique, consumes all inputs and is ver-
ified by the mining mechanisms.

2.4. What is the Blockchain? 19

Some benefits of this closed Blockchains are:

• The person or company that has control over this Blockchain
can revert or correct transactions, modify or block balances and
change other rules by adjusting the source code or implement-
ing other control systems. This is desired for many systems
controlled by the government.

• The miners can be private and known, so no one can control
the majority of the mining and perform a 51% attack. This type
of attack defines that anyone who has 51% of the mining power
can choose what chain will become the longest branch so that
it can define what transactions are included to that chain, thus
manipulating its content and allowing double spends and ulti-
mately doing whatever is against the defined rules.

• Given the last benefit, it makes transactions much cheaper.
There would be no hardware race to have the best hashing
power and the Blockchain could be theoretically mined by a
single unit.

• They can be faster as public Blockchains due to the known
nodes and miners. The latency between the different servers
can be optimized and the block time can be reduced to seconds
instead of Bitcoin’s ten minutes.

• The level of privacy is greater because the company can control
who has access to what data.

One could say that if freedom, openness and neutrality are of no
concern, then the private Blockchain is the finest tool.

2.4.4 Open Blockchain

The open or public Blockchain is the known system used by Bitcoin.
It is readable and writable by anyone around the world, as well as
completely decentralized. The cryptoeconomics (the combination
of cryptographic features and the economic value behind Bitcoin)
makes it one of the most secured database systems today.

20 Chapter 2. Basics

On the other hand, no one can control or log who has access to
the data. Such information could be required by some types of ap-
plications.

2.4.5 Namecoin

Namecoin is a good example of what can be done with an alternative
Blockchain. What Namecoin does is basically a decentralized DNS
system based on the Blockchain technology. To register a new .bit
domain or browse the existing domains, the user needs to download
the Namecoin client. Similarly to the Bitcoin client, it functions as
a peer-to-peer node, downloading the Namecoin Blockchain to the
local system. A middleware software is then used to connect a web
browser to the Namecoin client and provide the lookup for .bit do-
mains in the Blockchain. Whenever someone wants to register a do-
main they need the altcoin currency NMC and perform a transaction
into the Blockchain with the domain name as the data payload.

The benefit of this over existing domain registrars, DNS servers
and even HTTPS CAs is that Namecoin domains are censor resistant.
No one can prevent anyone from registering a domain, just like no
one can prevent someone from spending their bitcoins.

The local lookup system adds additional privacy and security
measures to the whole domain. It is not possible to hijack .bit do-
mains with man in the middle attacks or compromised DNS servers.
The local system does not perform any DNS lookup at a central au-
thority for every domain name the user looks up. These lookups
were used to spy on users in the past, like 2014 in Turkey1. Also,
.bit lookups are faster than standard DNS lookups and are updated
much faster while still being much cheaper without the recurring
registration costs.

2.4.6 Ethereum

Ethereum is one of the latest cryptocurrency projects and to date the
second largest regarding the market’s capitalization. While Bitcoin
provides a method to script code into transactions (see 2.3.4), it lacks
many required functions to write complete applications on top of the

1http://derstandard.at/1395363675874/Internetspionage-Tuerkei-leitet-
Google-DNS-um

2.5. Smart contracts 21

Blockchain protocol. For example, it is not possible to program loops
into a transaction script. Ethereum enables this and other functions
to make it "a decentralised secure social operating system" [Woo14,
p. 14] or "a Blockchain with a built-in Touring-complete program-
ming language" how it is named in its Wiki.

Ethereum briefly adds contract code and storage fields to all ac-
counts. The code then gets executed like an autonomous agent when-
ever the account receives a transaction and consumes gas. Gas is
a combination of the Ether currency and an execution cost for the
script, used to prevent denial of service attacks. The agent then can
interact with the storage, the accounts balance, or send messages to
other agents.

With the given complexity, Ethereum made it possible to develop
a decentralized autonomous organization (DAO), an institution without
a conventional management or leadership. All decisions in the DAO
are made by members who deposited Ethereum to it and attend to
votes through the Blockchain.

Because this adds an additional layer of complexity on top of
the young Blockchain technology, some people say that Ethereum
is too complicated to be secure enough. To sustain that, the DAO
was hacked on June 17th, 2016, and the counter-value of 45 million
euros was stolen. The hack lead to an agreement among all develop-
ers to revert the hack-transaction in the codebase, but not all nodes
and miners agreed with the decision. This resulted on a hard fork of
the Ethereum currency with two existing Blockchains. The reverted
ETH and the Ethereum Classic (ETC) fork with the existing 3,6 mil-
lion ETC hack.

2.5 Smart contracts

Smart contracts are computer protocols that handle or prove con-
tracts with technical methods. This can render the use of physical
contracts unnecessary. They function autonomously and leave out
some middlemen that need to verify a contract, like a notary.

Maiborn Wolff, a consulting company in Frankfurt, Germany, ex-
plains smart contracts to customers with the model in figure 2.6. Both
trading partners place their property into one side of the tubes. Then,

22 Chapter 2. Basics

FIGURE 2.6: physical model to explain smart contracts
from Maiborn Wolff

Source: https://twitter.com/droeder72/
status/775229713157685248/photo/1

the agent who handles the contract is depicted as a slice in the mid-
dle. This first deny the properties from sliding to the other person’s
tube exit. When the agent verifies that both partners entered the right
property or value, the gates are opened and the contents pass to the
other person’s side. Those persons do not have to trust each other or
even need to know who they are trading with. The only thing they’re
required to do is verify the agent’s source code or functionality.

The concept of smart contracts dates back to the 70’s through the
80’s [Hub88] with the goal to handle auctions and resource manage-
ment with software. In the next thirty centuries, a lot of different
concepts evolved on ways to handle contracts without a third party.
Plenty of it was revolutionized with the public key cryptography (see
2.1.2), which is also used in Bitcoin and Ethereum, or other cryp-
tocurrency concepts.

Next, there are some practical examples demonstrating what
smart contracts can be used for.

https://twitter.com/droeder72/status/775229713157685248/photo/1
https://twitter.com/droeder72/status/775229713157685248/photo/1

2.5. Smart contracts 23

2.5.1 Practical example 1: .bit domain in Namecoin

One example of a smart contract would be to sell the ownership for
a .bit domain in Namecoin. In the classic model, buyer and seller
need to trust each other when they transfer a domain. Whenever this
trust model goes wrong, a legal prosecution follows and the funds or
domain rights have to be transfered through legislative force. Given
the help of a smart contract, built with software, there is no more
need for trust. The seller can input the ownership of their domain
on the contract. Only when the buyer inputs their ownership of the
desired financial value (BTC, NMC, ETH, ...), the autonomous agent
in the contract code automatically transfers the two values between
the two parties.

2.5.2 Practical example 2: lent out photo equipment

Another practical example would be the possibility to lend out photo
equipment to another person. The owner (individual A) would take
a photo that proves the ownership with a personal ID, a daily news-
paper with the current date, and the serial number of the equipment.
They would then generate a digital hash for this photo and save it
with the serial number to the Blockchain. Whenever someone (indi-
vidual B) wants to rent this equipment, they would send the coun-
tervalue represented in any cryptocurrency to a smart contract. This
smart contract then would execute an agent that transfers the previ-
ous saved hash, what illustrates the ownership, automatically after
a predefined time frame from individual A to B, but also transfers
the funds that are frozen to the smart contract to individual A. When
individual B returns the rented equipment, they both agree to close
the smart contract by calling a close function, which just transfers the
ownership back to A and the funds back to B.

One problem would still remain with such a contract:

• The currencies volatility: The existing open cryptocurrencies
underlay strong volatilities. After the defined amount of time,
the countervalue in Euros could differ strongly from the equip-
ment’s real value. This can be handled by depositing a value
that is higher to the contract. The contract then can call an oracle
that replies with the current share price, calculates the amount
of crypto coins to send to individual A and B and executes the

24 Chapter 2. Basics

transference. This oracle is a service that saves the connection
between the smart contract and any data API. One example of
such service would be to call an API in given intervals and push
the exchange rate data to the Blockchain. The code in the smart
contract can then access this exchange rate data with a replica-
ble outcome.

2.5.3 Nowadays interest in smart contracts

Today there is a big interest in many existing business domains to
solve problems with smart contracts. May it be the stock market or
even the autonomous machine to machine charging of an electric car
on a power socket of public domain. The current state of smart con-
tracts with Blockchain technology is still in very early phases and
many ideas only exist as concepts. But there is a real interest in
times of digital transformation. One example is the company Mai-
born Wolff (Fig 2.6), who already provide consulting services with
Blockchain technologies for some big companies like BMW 2.

In this thesis, the practical possibility of transferring the moves and
funds for a competition in the game GO will be investigated and im-
plemented as a proof of concept for smart contracts. This is a prac-
tical example of two persons having a financial motivation but no
trust relationship.

2https://www.maibornwolff.de/blockchain

25

Chapter 3

Game presentation and user
flow

This chapter handles the game presentation and the user engage-
ment flow in the implemented game. First, the game GO is briefly de-
scribed and then the different phases of the game are depicted with
their implementations in form of the introduced Blockchain technol-
ogy.

3.1 A game of GO

For this thesis, the basic board game GO is chosen. While it is not
important to understand the rules of GO, since the focus of this thesis
is defined by its technical aspects, they are much easier than that of
chess, for example. In GO, two players (black and white) strategically
play against each other. On each turn the player may choose to either
move or pass. Within a move they place their respective stones in an
alternating order on the game board. The size of the board varies,
being either 19x19, 13x13, or just 9x9, for beginners.

The stones are not moved around like those of chess, making the
technical communication aspect of it much easier to deal with. Each
turn requires that the player either passes or plays by using their
respective ID or color and the X/Y coordinated of the move. After
every move, the rules are applied and stones may or may not be
removed from the field. That happens when a stone or a group of the
same has no liberty, an event that happens when they are surrounded
by opposing stones or on the limits of the board with no space left
to extend the group. Technically, that rule applies automatically on
both clients and is not needed to communicate between them in any
special form.

26 Chapter 3. Game presentation and user flow

A fascinating aspect of GO is its complexity when compared
to other strategic board games. The first supercomputer that de-
feated a professional GO player was Googles AlphaGO in March 2016
[Lim16]. The math behind the complexity of GO can be handled by a
thesis alone, but as an interesting comparison, the amount of possi-
ble Bitcoin addresses is 2160, while the amount of legal GO positions
is 2.08168199382 ∗ 10170 [Tro16].

This makes an online game of GO very resistant to players who
try to cheat by using a computer program, resulting in an interest-
ing example for the implementation with a smart contract winning
system.

The game in this thesis is handled by the open source library
tenuki.js by Adam Prescott [Pre16], which already has a client-server
architecture built in. The server part is replaced by using the Bitcoin
Blockchain protocol. Each client or player communicates through
their browser with a random Bitcoin node by listening and writing
directly from or to the Blockchain.

The developed game, its techniques and protocols are described
in the following sections.

3.1.1 Visiting the website

First, when any user visits the website a lot of code is executed in the
browser, not visible in the frontend. The user’s wallet is generated
and saved or just loaded if they are returning to the page. Then, the
backend establishes a connection to some Bitcoin full nodes and the
implemented services start to scan the Blockchain for games whilst
listening for incoming Bitcoin transactions.

Visible for the user is the process where their wallet is created
in the later explained walletService 4.3.2. They are then greeted by
their own Bitcoin address, representing their identity in later games
and also serving as a payment method for their wallets. The address
is showed in Fig 3.1 as an input field, as well as a QR code. This
code represents the address, making it easy for the Bitcoin wallets
on smartphones to scan it. In the first implementation of the game
this random address is fixed and stored in the browser’s localStorage
database.

3.1. A game of GO 27

FIGURE 3.1: Game menu with open address and trans-
actions list

Later on this should become extended to a whole wallet with the
possibility to generate more incoming addresses and a method to
withdraw funds. Normally, a Bitcoin address is used only once for
privacy and security reasons, but can be used as many times as one
wishes to. As an improvement, this wallet should be in the form of a
hierarchical deterministic (HD) wallet as introduced in BIP32 by Pieter
Wuille[Wui12]. The latter does not generate random addresses like
this game does in its current version.

FIGURE 3.2: Elliptic Curve samples

Source: Wolfram Alpha

An HD wallet creates a random 128 bit seed that can be displayed
with a 12 word mnemonic using a defined dictionary with common
English words. These words are shown to the user, allowing them
to make a backup of their wallet/account by saving those words.
The wallet service then can derive new addresses with this starting
seed by using elliptic curve cryptography. In short, this method takes
the seed as a starting point to generate an elliptic curve like in 3.2

28 Chapter 3. Game presentation and user flow

where each new address stands for a fixed X and Y coordinates in
this curve. This process of generating and backing up a wallet is
common in many Bitcoin projects and well known for the most users,
experienced with Bitcoin.

3.1.2 Game start

After the user sets up their wallet and charges it with funds, the game
can be started. They may either choose to host a new game or join
an existing one. The screen in fig 3.3 shows the actions necessary to
start a new game to the left and the options to filter existing games to
the right. Below is a list of all existing games that match the defined
filters.

FIGURE 3.3: Game screen with new game and filters

If they wish to start a new game, the desired amount of Bitcoins
must be set towards the winning pool before clicking the left but-
ton. The backend code then creates a transaction to the fixed Bitcoin-
GO-Game-address mgogame... as seen in fig 3.4, with an OP_RETURN
message (Output 4: Null Data Transaction in fig 3.4) that specifies
the start of a new game). The transaction also submits the amount of
winnable Bitcoins to a second, random generated address (Output 2:
0.95 BTC in fig 3.4), which defines the game and its later moves.

3.1. A game of GO 29

The sample transaction in fig 3.4 has one input and 4 outputs:

• First, the input address itself for the remaining balance.

• The random generated address for the game.

• Then, the mgogame... address where all clients listen to for the
process of finding new games.

• And finally, output the OP_RETURN containing the NEW-game
statement.

FIGURE 3.4: Sample start game transaction

Source: https://www.blockcypher.com/

Other players can later scan the Blockchain while listening to that
fixed mgogame... address and find the OP_RETURN NEW-game state-
ment. At the same time they see the outgoing Bitcoins to the random
generated game address and can then sign up to play against the op-
ponent. To achieve this they have to click join, allowing the game
service to send the same amount from the user’s private wallet to a
new multisig address. It also generates a JOIN-game transaction to
the fixed mgogame... addess to let the opponent know that the game
is ready to start. The opponent then responds to this by also moving
their bet to the multisig address. This process is later described in
chapter 4.4, with the implemented smart contract in more detail.

Now both players are ready to start and have paid their stake to
the multisig address. The game knows which address is used for the
current instance and that both players have the permission to play.

As seen in the sequence diagram (fig 3.5), players one and two
never have a direct connection to each other, maintaining anonymity.

https://www.blockcypher.com/

30 Chapter 3. Game presentation and user flow

FIGURE 3.5: Sequence diagram for start and join game

Source: https://www.websequencediagrams.
com/

3.1.3 Transmitting moves

To play a move, one player clicks on the board to set their stone. Fig
3.6 shows an ongoing game between two players with 13 moves.

For each move the gaming backend sends a transaction with an
OP_RETURN code containing the X/Y coordinates of the move. Be-
cause of the alternating order of the players’ and the origin address,
it is not required to submit a color for the move. As a drawback of
the Blockchain protocol, each move requires a small fee to the miners
as a bounty for including this transaction to blocks. With each move
this fee is subtracted from the player’s private wallet.

As seen in 3.7, one move only has the input wallet and the unique
game address as outputs. Also, the transferred value is only 2
Satoshis plus an added fee that allows this transaction to be included
into the Blockchain. Such a transaction is roundabout 270 bytes large
and needs a fee of 60 Satoshis [21.16b] for no delay. This would re-
sult in a cost of 8 cents for each move. Because it is enough to let the
nodes reply that transaction and hold it into their mempool, the min-
ing fee can be made much smaller. The game does not rely on fast
confirmations from the miners for the moves. If we were to choose
10 Satoshis per byte, this would result in 1 cent per move and an es-
timate of 3 hours of confirmation time. This would only delay the

https://www.websequencediagrams.com/
https://www.websequencediagrams.com/

3.1. A game of GO 31

FIGURE 3.6: Screenshot of a running game

FIGURE 3.7: Sample move transaction

Source: https://www.blockcypher.com/

payout for the winnings in case both players do not agree on a win-
ner and a third party – as an escrow – has to check every move. The
difference of the mempool and the Blockchain will be described in
more detail in chapter 4.2.3.

3.1.4 Listening to live moves

The second player listens to incoming transactions on the Blockchain
under the gaming address and decodes the OP_RETURN message. It
then verifies the destination address as the one of the second player
and if the move is legit. When everything is correct, it places the
stone on the GO board and the current turn to the second player.

https://www.blockcypher.com/

32 Chapter 3. Game presentation and user flow

FIGURE 3.8: Sequence diagram for moves in the game

Source: https://www.websequencediagrams.
com/

3.1.5 Replaying a game

If one player does not play live, reloads the browser, or just wants to
watch an ongoing match, they must first sync up with the game from
the beginning. This process is done by the backend while scanning
the Blockchain and watching the fixed mgogame... and the random
game address. It is then able to find the commands for a new game,
the joining player and all moves, as well as being able to reset the
game in the browser to the current state by replaying move by move.

3.1.6 End of game

When both players click "pass" or the field is full, the game comes to
an end. Both players can verify who is the winner and sign a trans-
action to send the funds from the multisig gaming address back to
the winner’s wallet. After both players signed the transaction it gets
submitted to the Bitcoin peer-to-peer network and the winnings are
transmitted. Whenever one player does not do this or is attempting
to cheat, they are not allowed to get their funds back because of the
nature of the multisig address. At least two persons must sign each

https://www.websequencediagrams.com/
https://www.websequencediagrams.com/

3.2. Legal aspects 33

transaction in the same way. The address is set up to be a 2of3 ad-
dress with a third person that can audit such games and fill in the
role of a referee in case of any conflicts.

FIGURE 3.9: Sequence diagram for the games end

Source: https://www.websequencediagrams.
com/

3.2 Legal aspects

Because the game of GO developed in this thesis is a form of mon-
etary gain and arguably gambling, it might be important to address
legal concerns.

Reading the German Staatsvertrag zum Glückspeilwesen in Deutsch-
land [BD16, §3 Item 1] depicts that gambling happens when there is
a random factor. That is not the case here, as GO is a pure strategic
game lacking factors of luck or randomness. It is safe to say that this
thesis has nothing to do with gambling.

Even when similar laws are not present in other countries, there
is still the fact that the developed application has no middleman be-
tween two players. With the implemented Blockchain technology,
there is no banker or any service controlled by a third party that

https://www.websequencediagrams.com/
https://www.websequencediagrams.com/

34 Chapter 3. Game presentation and user flow

holds the users’ funds. The control over the funds never leaves the
user’s own browser. The application does not run on any server that
handles any communication for the two players, but in case any le-
gal information is ever required, everything is publicly visible to any
law enforcing agencies, thanks to the open Blockchain protocol.

Money laundering could still be a problem, as it is in many Bit-
coin projects. Bitcoin’s nature provides total anonymity for the user,
which could be obfuscated by using a proxy server or the TOR hid-
den project. It is difficult, if not impossible, to track the person that
bought the Bitcoins on an exchange and where they transferred those
coins to.

This game could be used to transfer funds anonymously to other
people. One person could just open two different browser instances
and play the game by themself. However, this would just result in
a transfer from wallet A to wallet B. This could also be done with a
normal Bitcoin wallet without the game in between.

To be safe, the developed game only runs on the Bitcoin test network,
also called Testnet [Bit16b]. This copy of the Bitcoin and Blockchain
architecture is available online in the same way as the normal Bitcoin
network, operating exactly the same as the main network. New fea-
tures or improvements for the Bitcoin network are beeing tested for
security and/or other reasons in the Testnet. This may cause it to be
a problematic network to store real value in. For example, it is clearly
stated that this network does not store any exchangeable monetary
value. It could be resetted and restored to zero at any given time.
Also, the limitation to use only the introduced standard transactions
2.3.3 are disabled here, so that this network can be used to experi-
ment with newer or other features. Funds for testing can be obtained
for free from various websites, so called Bitcoin faucets, given that the
transactions are free too what makes the Testnet perfect for playing
the game of GO.

Using the Testnet leaves the whole game just as a proof of concept
or just as a game instead of legally actionable in any form.

35

Chapter 4

Implementation

This chapter explains the technical implementation of the game and
its source code. The development was by far the biggest phase in
this project, because the technology is quite young and many of the
used tools or practices are not well, if at all, documented. This lead to
a lot of research about the basics of Bitcoin and Blockchain technol-
ogy and plenty of communication with the developers of the open
source tools used. The following sections detail the four biggest im-
plemented modules and how they interact with each other. Also, the
communication to Bitcoin nodes is depicted alongside the problems
that occurred during the implementation phase.

4.1 Application structure

The application has four bigger modules, one serving as a controller
and three as services injected to that controller. The following UML
diagram shows those modules, the injections and the implemented
observer patterns that are explained in the next section.

36 Chapter 4. Implementation

GameController
Game:GameService
Wallet:WalletService
startNewGame(x:int, y:int)
gotMessage():void

GameService
BitcoinNode:BitcoinNode
Wallet:WalletService
observers: functions[0..*]
registerObserverCallback(callback:function)
notifyObservers():void

BitcoinNode
observers: functions[0..*]
registerObserverCallback(callback:function)
notifyObservers():void
onTransaction():void

WalletService
BitcoinNode:BitcoinNode
gotTransaction():void

4.1.1 Angular communication between services

In the application there are four bigger modules that handle the
workflow:

• GameController: This is the controller that defines the actions
that can be called by the frontend and handles the communi-
cation back from the deeper services to the frontend game, like
starting new games, joining, moving and passing.

• GameService: The service receives transactions from the bit-
coinNode and utilizes the communication protocol to pass ac-
tions, such as new games and game moves to the gameCon-
troller. Also implemented here are the smart contract, the logic
to generate new games with their addresses and the player’s
actions like starting and joining games.

• WalletService: The walletService handles all balances and trans-
actions with their UTXOs from and to the user’s wallet.

• BitcoinNode: The bitcoinNode, as the heart of the application,
handles the communication with the Bitcoin nodes and the
Blockchain.

4.1. Application structure 37

The application structure from AngularJS is based on a dependency
injection pattern. Each controller or service can get other modules
injected into the constructor. For this application, the BitcoinNode
is injected in the GameService, and the WalletService, then both are
injected in the GameController.

Because of the asynchronous communication, which can be initi-
ated by either the frontend or the other way around from incoming
transactions submitted by other players through the Blockchain, an
untypical two way communication had to be implemented. This can
be done in AngularJS with three big known methods:

• $watch on injected modules: with the usage of the $watch func-
tion, AngularJS can monitor changes to attributes of function
returns. This can be applied on public attributes of the injected
modules. One problem with this method is that the $watch is
only applied with a digest cycle and that way, can be delayed.
Another issue would be intransparent communication paths.

• $watch on $rootScope: Each module can implement the so called
$rootScope and can apply attributes to it. Other modules can
consume those attributes by using the same methode previ-
ously mentioned. This is so far the most used method to handle
communication between two controllers, but can lead to per-
formance issues and unclear communication paths.

• observer pattern: With the observer design pattern, a function can
be registered by the module that triggers the action, which can
directly call this function. While this is the tidiest method to
handle a communication between methods, it has some issues
with the local $scope of the AngularJS structure. It is needed to
guarantee that the "this" scope is passed to each callback func-
tions.

For this application, I have used the observer pattern to handle
the communication from the BitcoinNode back to the GameController.
Whenever a transaction is sent to the service, it calls the notifyOb-
server() method. This one will call the earlier registered functions
from the GameService and WalletService. The WalletService then checks
if the transaction is sent to the user’s wallet and if so, it saves the
transaction ID and the incoming amount. The transaction ID is later

38 Chapter 4. Implementation

needed to send outgoing transactions. The GameService also scans the
transaction, but it checks other details as well, mostly scanning for an
OP_RETURN code and handling the given action in this code. Then,
it calls its notifyObservers() function, which in turn calls the registered
frontend function in the GameController.

4.1.2 Client communication with nodes

The first prototype was developed towards a backend API, which
grants functions to listen for and send transactions with a Bitcoin
wallet on the backend side. While this was quite easy to achieve and
worked properly, it was not the desired goal to develop an applica-
tion without the need of a trusted backend. After this first prototype
it was clear that the main concepts work out and two different game
instances can communicate all game moves with each other over the
Bitcoin Blockchain. Then, one client was switched to a new method
to interact with the full nodes directly:

The open source tool bitcoin-net from Matt Bell [Bel16], written
for nodeJS, can be compiled with help of browserify1, or webkit2, to be
used in any web browser. With this tool it is possible to directly con-
nect to a Bitcoin full node and use the fundamental Bitcoin protocol.

The developed tool is acting as a Simplified Payment Verification
(SPV) client listening only to desired transactions from full nodes
with the usage of bloom filters. With this technology, the client speci-
fies a filter that it listens to and sends this filter to the nodes. These
nodes keep the filter into their memory and only relay transactions
to the client that matches the filter(s).

The further difficulties in the communication will be described in
the next chapter.

1http://browserify.org/
2https://webkit.org/

http://browserify.org/
https://webkit.org/

4.2. Different communication stages 39

4.2 Different communication stages

There are different stages where data in the Blockchain is exchanged
by the full nodes. All different stages receive the same transaction
data, but need different implementations in the client that can result
in delayed time-frames.

4.2.1 Live

For the live gaming between two players, their clients use the so
called inv packets and the filtering option. Here, the communica-
tion flow is as follows: Each client sends the addresses it listens to in
form of filters to its connected full nodes. After the player has made
a move, the client then sends this to one of its nodes. The full node
receives one transaction (game move) from client/player one and
broadcasts it to all other connected nodes. Each node then applies
the filters and, if the second player is also connected to it, pushes the
transaction, matching the filters to its client within an inv packet. In
this packet, only the transaction hash is included. The client then has
to reply with a getdata packet back to the node and request the raw
transaction data. Then, after it receives the data it can decode it and
replay the move to the local game board.

4.2.2 Blockchain

After about 10 minutes, all transactions are packed into the next
block in the Blockchain. The clients initially have to scan all new
blocks in the Blockchain and replay all moves made by other clients.
They do this by requesting a headerstream from the connected node.
The nodes apply the bloom filters and reply with the desired header
packets with batches of hundreds of blocks. Then, the clients request
all transaction data again through getdata packets, as done in the live
process.

The problem is that the order of the game moves are not packed
into blocks in the same order as they are sent. It even could hap-
pen that one earlier move is packed into a much higher block and
so is received by the clients in a different sequence or even 10, 20,
or more minutes later. Resulting out of this, the transaction data has
to be extended with the game move number. The game instance has

40 Chapter 4. Implementation

to maintain an array with all moves and only replay them when it
receives the next move in the right order.

4.2.3 Mempool

When the client just jumps into the game right after the move is made
and before it is packed into a block, it does not get the data in the live
inv packets and also not during the block scanning process. There is a
third way to request data from the so called mempool. In this pool, the
nodes preserve all transactions that are not yet packed into a block
by the miners. The client can request this data by sending a mempool
packet, then receiving the same data as in the inv and Blockchain
methods.

4.3. Description of program code 41

4.3 Description of program code

This section focuses on the implemented program code. It describes
the implementations within the four modules by depicting the most
important parts of it. Additionally, it describes more detailed tech-
nology parts and problems that occurred within the programming
phase. The code is slightly changed for visibility reasons and some
parameters (especially the testnet param) are removed to keep things
simpler.

4.3.1 bitcoinNode

The bitcoinNode service can be considered the heart of the game. It
handles all communication from the two other services to the Bit-
coin network. This is implemented with the help of the bitcoin-net
libraries from Matt Bell [Bel16]. The major problem here was that
these tools are not really documentation and are in a very early de-
velopment state. A lot of communication and bug-fixing had to be
done to really make use of the libraries, but once they work, they pro-
vide the ability to communicate with the Bitcoin nodes in JavaScript.

One feature is that this library can act as a Simplified Payment Ver-
ification (SPV) client. These clients differ from full nodes in that they
do not need to download and store the whole Blockchain [Bit16d].
Nakamoto writes that it is possible to only download the block head-
ers without the whole transaction chain and relay on the next some
blocks: "He can’t check the transaction for himself, but by linking it
to a place in the chain, he can see that a network node has accepted it,
and blocks added after it further confirms the network has accepted
it." [Nak08]

This can be accepted as long as the nodes are not relaying false
data because anyone could add a node that responds with wrong
data. This could be used to break the security of a Blockchain ap-
plication. For the purpose of this game, it is sufficient because both
players would have to connect to the same manipulated node so that
both can receive the wrong data. The chance of this happening is
small enough to benefit from the reduction in bandwidth and mem-
ory. Also, the further explained merkle tree algorithm protects against
such manipulations.

42 Chapter 4. Implementation

In addition to that, SPV clients use an interesting technique to
download only specific transactions instead of whole blocks while
still verifying those transactions to be valid. They use the fact that
transactions are saved inside of a block with the data structure of a
merkle tree. This tree saves the transaction, respectively its hashes,
in the leaves and always hashes two of those hashes downwards said
tree. The root node is then called merkle root (also seen in the follow-
ing listing, 4.3.1). Now, when a client downloads a single transaction,
it can verify the validity of that when it just downloads and compares
the hashes from that leaf to the root with the neighboring hashes.

FIGURE 4.1: Merkle Tree example with colors

Source: [Har16]

For example, we take the tree with colored nodes from Fig 4.1.
A client downloads the data packet I. It would then only need to
download the numbered hashes 1 ABCDEFGH, 2 MNOP, 3 KL, 4
J and the merkle root to verify the validity of the packet I. First, it
hashes the data in I and combine that hash with the one from J, re-
sulting in #BB0000 as in IJ. Then, it hashes this with the downloaded
hash #A95B00 from 3 KL and gets the hash in IJKL. Finally, it gets,
with just some rounds of hashing, the mekle root hash without the
need to download the whole data in this tree. This method makes
the most sense in a distributed or peer-to-peer network where com-
munication is more expensive than some CPU cycles used to hash
the data. Merkle trees are also used for BitTorrent and Git.

SPV clients also give the advantage that they can start to down-
load the Blockchain from any point. That reduces the initial syncing
time considerably if compared to the full node, which has to down-
load 80 GB of data for the last 8 years. In the developed application,

4.3. Description of program code 43

this is done in the bitcoinNode by setting a checkpoints variable. This
is done once initially and later saved in form of the latest block to the
browsers localStorage database. Then, it is retrieved when the user
reloads the page.

1 params.blockchain.checkpoints = [

2 {

3 height: 927360, //latest block height

4 header: {

5 version: 805306368,

6 prevHash: utils.toHash(’000000000000009dc...06f81ce’),

7 merkleRoot: utils.toHash(’75ad5b2aec...ebe0dd8249’),

8 timestamp: new Date(’2016-09-08T10:06:07Z’) / 1000,

9 bits: 436339440,

10 nonce: 2576579554 //nonce that this block has been

mined with to match the 00000000000000 from the hash

11 }

12 }

13];

14
15 //override the latest checkpoint in case it was saved

16 let latestBlock = localStorage.getItem(’block’);

17 if (latestBlock !== null) {

18 params.blockchain.checkpoints = localStorage.getItem(’

block’);

19 }

20
21 //receiving blocks

22 blockStream.on(’data’, (block) => {

23 if (block.height % 2016 === 0) {

24 //storing the block to the browsers localStorage Object

25 localStorage.setItem(’block’, JSON.stringify(block));

26 }

27 });

The rest of this service is setting up a memory database, connect-
ing to the nodes (peers in the code) and enabling the BlockStream
and HeaderStreams to start listening to blocks. Finally, it connects to
the peer network and calls the registered observers once it receives a
transaction.

1 //setup chain DB

2 const db = levelup(’testChain’, { db: require(’memdown’) });

3 const chain = new Blockchain(params.blockchain, db);

4

44 Chapter 4. Implementation

5 // create peer group, filter and blockStream

6 this.peers = new PeerGroup(params.net);

7 this.filter = new Filter(this.peers);

8 const blockStream = new Download.BlockStream(this.peers);

9
10 //once connected to the first peer

11 this.peers.once(’peer’, () => {

12 chain.getBlockAtHeight(params.blockchain.checkpoints[0].

height, function (err, startBlock) {

13 const readStream = chain.createReadStream({ from:

startBlock.header.getHash(), inclusive: false });

14 readStream.pipe(blockStream);

15 });

16
17 //start HeaderStream to download block headers

18 const headers = new Download.HeaderStream(this.peers);

19 pump(

20 chain.createLocatorStream(),

21 headers,

22 chain.createWriteStream()

23)

24 });

25
26 // notify observers with incoming transactions

27 new Inventory(this.peers).inv.on(’tx’, (tx) => {

28 notifyObservers(tx);

29 });

30
31 this.peers.connect();

The most important part to save bandwidth, computation power
and memory is the ability to add filters (see line 7 in the listing
above). Filters are later added by the wallet and game services to
only listen to specific transactions that match the known addresses.
Those filters are sent to the connected full nodes and these in turn
only reply with transactions that match those. This is implemented
with the following function:

1 subscribe(address) {

2 const hash = bitcoinjs.address.fromBase58Check(address);

3 this.filter.add(new Buffer(hash.hash, ’hex’));

4 }

4.3. Description of program code 45

This is a powerful feature, but lead to a problematic mistake with
the described method that gave each game its own randomized game
address (remember 3.1.2). Each new game is initialized to a transac-
tion to the master address and later has its own game address to
replay all moves. Combined with the ability to bulk download block
headers (see the code in 4.3.1) only matching specific filters, it gives
the drawback that, once the bulk download finds some game ad-
dresses for newly started games, the previous filter does not include
that new games. Further blocks (game moves) are not relayed by the
nodes in this bulk download because they do not match the filters
and the height of the current download state is way above the previ-
ous games. This is fixed by downloading the blockheaders twice, once
to find all games and setting up the filters for those games, and then
again to receive all moves into those games. Yet, this lead to another
problem: The nodes do not notify when the Blockchain reaches its
end, so another solution is to wait for a timeout and then redo the
whole Blockchain download. Whenever the client is connected to a
slow running node, this lets the current implementation to skip some
moves. A problematic behaviour that needs to refresh the page.

The implementation to the second download is similar to the list-
ing above, but is triggered by the blockStream.on(’data’) listener, like
in the initial listing, and not listed here in detail.

4.3.2 walletService

The first thing that happens when a user visits the page is the "reg-
istration" of their wallet. Typical sign up and log in features are not
used here. Instead, each visitor gets a local Bitcoin wallet with a
randomly generated address. For simplicity, the first version of the
game only uses a single address. Later on this should be a whole
wallet with many different addresses for each deposit, but because
the game identifies the player by their address, it would be an addi-
tional overhead to have different addresses for each open game. The
address, with its public and private keys, is then saved to the local-
Storage object of the user’s browser. Whenever the user revisits the
site, this object is reloaded to the walletService.

The address generation, setup of the filter and registration of the
callback to the bitcoinNode are done with the help of the bitcoinjs-lib

46 Chapter 4. Implementation

[Tho+16], which works like this:

1 const keyPair = bitcoinjs.ECPair.makeRandom();

2 this.wallet.address = {

3 public: keyPair.getAddress(),

4 private: keyPair.toWIF()

5 };

6
7 this.listenToAddress(this.wallet.address.public);

8 this.bitcoinNode.registerObserverCallback(this.

gotTransaction.bind(this));

In line 7, the public address is being listened to. This calls a func-
tion in the bitcoinNode service that sends a bloom filter to all con-
nected nodes, letting them know that this client wants to be notified
for incoming transactions. Now the user can deposit some Bitcoins
to that address through the GUI.

After the deposits are seen by the peer-to-peer network, the first
connected node with that filter sends the transaction back to the ap-
plication and the gotTransaction() function is called.

1 gotTransaction(tx) {

2 tx.outs.forEach((out) => {

3 //decode out script and get pubKey from script

4 const pubKey = bitcoinjs.address.fromOutputScript(out.

script);

5
6 //check if key is an own wallet address

7 if (this.isOwnAddress(pubKey)) {

8 //decode in script

9 let chunksIn = bitcoinjs.script.decompile(tx.ins[0].

script);

10 let pubKeyIn = bitcoinjs.ECPair.fromPublicKeyBuffer(

chunksIn[1]);

11
12 let prevOutTxId = [].reverse.call(new Buffer(tx.ins

[0].hash)).toString(’hex’);

13
14 //sent to self, remove from unspend array

15 if(pubKeyIn.getAddress() === pubKey) {

16 this.wallet.unspend.splice(

17 this.wallet.unspend.findIndex(x => x.tx ===

prevOutTxId), 1

4.3. Description of program code 47

18);

19 }

20
21 //add tx and its value to the list of unspend txs

22 this.addUnspend(tx.getId(), out.value.toNumber());

23 }

24 });

25 }

This function scans all outputs in the transaction that belong to
the user’s wallet. Then, it checks if the output is the same public ad-
dress as the input (this is true for all change transactions) and removes
them from the actual list of unspend transactions (UTXOs). If it is not
a change transaction, it must be an input from the user’s deposit and
as such, it is added to a local array with all unspend transactions. This
list is used to generate outgoing transactions with a reference to the
last transaction ID and the incoming value.

Then, the most important part of the walletService is the function to
send transactions to the network.

1 sendTxTo(sendTos, message) {

2 //get an unspend tx or return if none is found

3 let lastTx = this.getUnspend();

4 if(typeof lastTx !== ’object’) return;

5
6 //start tx and add the last unspend tx as input

7 const tx = new bitcoinjs.TransactionBuilder();

8 tx.addInput(lastTx.tx, 0); //index 0

9
10 //setup fee and calculate amount and balance

11 const fee_amount = 8000;

12 let op_amount, amount = 0;

13 if(message!==’’) { op_amount = 1; }

14 sendTos.forEach(function(sendTo) {

15 amount += sendTo.value;

16 });

17 const balance = lastTx.value-amount-fee_amount-op_amount

18
19 //out address must be at index 0, see mirror in tx

20 tx.addOutput(this.getLatestAddress(), balance);

21
22 //add all outputs

48 Chapter 4. Implementation

23 sendTos.forEach(function(sendTo) {

24 tx.addOutput(sendTo.address, sendTo.value);

25 });

26
27 //add OP_RETURN message

28 if(message!==’’) {

29 const dataScript = bitcoinjs.script.nullDataOutput(

30 new Buffer(message)

31);

32 tx.addOutput(dataScript, op_amount);

33 }

34
35 //sign transaction with the wallets private key

36 const keyPair = bitcoinjs.ECPair.fromWIF(this.getWif());

37 tx.sign(0, keyPair);

38
39 //build, transmitt and save remaining UTXO

40 const buildTX = tx.build();

41 this.bitcoinNode.sendTx(buildTX);

42 this.addUnspend(buildTX.getId(), balance);

43 }

This function takes an array of outgoing addresses with a value
and an additional message parameter. It then reads the last unspent
transaction ID and the value from the user’s wallet to generate a
transaction with the help of bitcoinjs-libs TransactionBuilder by using
that input. For all outputs, it adds those and subtracts the value from
the input’s total value. The remaining value is added to an additional
output with the latest user’s wallet address. Remember, the sum of
all outputs must match the input transaction. If the message is added
to the function, it also gets included as a null data output. At last, the
transaction is signed with the user’s private key and gets transmitted
to the Bitcoin network. Because the change amount is sent to a new
incoming transaction in the same wallet, it also gets directly added
to the local wallet storage.

4.3. Description of program code 49

4.3.3 gameService

The connection of the gameService to the bitcoinNode is similar to the
walletService. It also registers a listener to the bitcoinNode that lis-
tens to incoming transactions. Besides, it initializes an array with
all games and the current game instance.

Because the game service handles all OP_RETURN transactions,
the code to decode the transactions is more complex than the one
found in the walletService. Decoding of input and output transactions
is similar to the bitcoinjs-lib, but done for all ins and outs:

1 gotTransaction(tx) {

2 for (let output of tx.outs) {

3 const chunks = bitcoinjs.script.decompile(output.script)

4 output.pubKey = bitcoinjs.address.fromOutputScript(

output.script);

5 }

6
7 for (let input of tx.ins) {

8 const chunks = bitcoinjs.script.decompile(input.script);

9 input.pubKey = bitcoinjs.ECPair.fromPublicKeyBuffer(

chunks[1]).getAddress();

10 }

11
12 ...

After some validation checking and error handling, the loop is
similar to the one in the walletService, with the difference that this
service scans for the OP_RETURN transaction part instead of the
own wallet addresses. With this transaction it reconstructs the ac-
tual game actions:

1 ...

2 tx.outs.forEach((out) => {

3 let game = this.games[gameAddress] || angular.copy(this.

gameInitState);

4
5 //check if output is an OP_RETURN

6 const chunks = bitcoinjs.script.decompile(out.script);

7 if(chunks.shift() === bitcoinjs.opcodes.OP_RETURN) {

8 const message = chunks.toString();

9
10 if(message === this.commands.new) {

11 game.state = ’open’;

50 Chapter 4. Implementation

12 game.address.value = tx.outs[1].value;

13 game.address.public = gameAddress;

14 game.players.one = pubKeyIn;

15 }else if(message === this.commands.pass) {

16 //check for legitimate players

17 if(pubKeyIn === game.players.one

18 || pubKeyIn === game.players.two) {

19 if (game.state !== ’pass’) {

20 game.state = ’pass’;

21 } else {

22 game.state = ’end’;

23 }

24 }

25 }else if(message === this.commands.join) {

26 game.state = ’running’;

27 game.players.two = pubKeyIn;

28 game.address.paymentFromTwo = tx.outs[2].pubKey;

29
30 //player one receives the join from player two

31 if(this.wallet.isOwnAddress(this.currentGame.players.

one)) {

32 //use all 4 pubKeys to reconstruct multiSig address

33 const pubKeys = [];

34 pubKeys[0] = new Buffer(this.masterAddress);

35 pubKeys[1] = new Buffer(game.players.one);

36 pubKeys[2] = new Buffer(game.players.two);

37 pubKeys[3] = new Buffer(game.address.public);

38
39 // generate 3 of 4 multisig address

40 const redeemScript = bitcoinjs.script.multisigOutput

(3, pubKeys);

41 const scriptPubKey = bitcoinjs.script.

scriptHashOutput(bitcoinjs.crypto.hash160(redeemScript))

42 const payAddress = bitcoinjs.address.

fromOutputScript(scriptPubKey);

43
44 //multisig payment address matches

45 if(game.address.paymentFromTwo === payAddress) {

46 game.address.payment = payAddress;

47 //forward funds from game address

48 this.wallet.spendOpenGame(gameAddress, payAddress)

49 }

50 }

51 }else{ //received a game move

52 const data = JSON.parse(message);

53 const move = {

4.3. Description of program code 51

54 x: data.x,

55 y: data.y,

56 n: data.n,

57 p: data.p,

58 pk: pubKeyIn

59 };

60 game.moves[move.n] = move;

61 this.notifyMove(move);

62 }

63 }

64 this.games[gameAddress] = game;

65 });

The actions new, pass and move are basically straightforward and
just translate the transaction data to the this.games object.

The interesting part is the join command. Whenever a client re-
ceives that command, it checks if player one is the one who sent the
game funds to the game address. This moment is the first time in the
game that it knows its opponent and their public key. Now it can
construct the same multisig address as player two did when joining
the game. Finally, it can use its own private key to spend the value it
sent to the game address and send it to the multisig payment address
so that the smart contract behind this game can be started with both
players’ payment and both players’ control.

After the Blockchain sync is complete and this function has con-
structed all games, the user can replay any previous games on the
GUI. When they clicks an active game, it is possible to watch it in re-
altime (with this.notifyMove(move)) or play their moves if their wallet
address matches one of the players. If only one player is set, they can
join that game.

Sending game moves or a pass is a simple call to the walletService
with:

1 this.wallet.sendTxTo([{address: this.currentGame.address.

public, value: 1}], JSON.stringify(move));

52 Chapter 4. Implementation

To join a game, the deposit to the game address is added and the
second player is set to the current wallet address:

1 this.currentGame.players.two = wallet.getLatestAddress();

2
3 //use all 4 pubKeys to reconstruct multiSig address

4 const pubKeys = [];

5 pubKeys[0] = new Buffer(this.masterAddress);

6 pubKeys[1] = new Buffer(this.currentGame.players.one);

7 pubKeys[2] = new Buffer(this.currentGame.players.two);

8 pubKeys[3] = new Buffer(this.currentGame.address.public);

9
10 // generate 3 of 4 multisig address

11 const redeemScript = bitcoinjs.script.multisigOutput(3,

pubKeys);

12 const scriptPubKey = bitcoinjs.script.scriptHashOutput(

bitcoinjs.crypto.hash160(redeemScript));

13 const payAddress = bitcoinjs.address.fromOutputScript(

scriptPubKey);

14
15 this.games[this.currentGame.address.public].address.payment

= payAddress;

16
17 const sendTos = [

18 {address: this.currentGame.address.public, value: 1},

19 {address: this.currentGame.address.payment, value: this.

currentGame.address.value},

20 {address: this.masterAddress, value: 10000}

21];

22
23 this.wallet.sendTxTo(sendTos, this.commands.join);

4.3. Description of program code 53

The most important part is to start a new game. This is done by
creating a new address for the match and sending the desired bet
amount to that address. After this, the application redirects the user
to that game’s page and they can send the link to other people, or
just wait for someone to join them.

1 startNewGame(betAmount) {

2 this.currentGame = angular.copy(this.gameInitState);

3
4 //generate random game address

5 const keyPair = bitcoinjs.ECPair.makeRandom();

6 this.currentGame.address.public = keyPair.getAddress();

7 this.currentGame.address.value = betAmount*100000000;

8 this.currentGame.state = ’running’;

9 this.currentGame.players.one = this.wallet.

getLatestAddress();

10
11 //add this address to the filters

12 this.bitcoinNode.subscribe(this.currentGame.address.public

);

13
14 //send desired bet amount to that address

15 const sendTos = [

16 {address: this.currentGame.address.public, value:

betAmount*100000000},

17 {address: this.masterAddress, value: 10000}

18];

19
20 this.wallet.sendTxTo(sendTos, this.commands.new);

21
22 //save this private key to be later used for forwarding

the value to the multisig address

23 this.wallet.saveOpenGame(txID, keyPair, this.currentGame.

address.value);

24 this.games[this.currentGame.address.public] = this.

currentGame;

25 //redirect the browser to the game page

26 this.$state.transitionTo(’game.play’, {’pubKey’: this.

currentGame.address.public});

27 return this.currentGame;

28 }

54 Chapter 4. Implementation

4.3.4 gameController

The gameController handles the communication between the gameSer-
vice and the frontend. It registres an observer callback to the gameSer-
vice in the same way as the latter and walletService do to the bitcoinN-
ode. It initializes the tenuki lib [Pre16] when it receives the message
with the command start for the game and passes the commands pass,
join and move to it. The move part guarantees that the moves are re-
played in the right order and no moves are skipped. For this, the
games.move array in the gameService saves the move number and the
controller replays them in the for loop. Moves can be received in the
wrong order, especially when a user reloads the site and the engine
scans the Blockchain for previous moves.

1 gotMessage(message) {

2 if (message.type === ’start’) {

3 let player = ’black’;

4 if(this.wallet.isOwnAddress(message.game.players.one)) {

5 player = ’white’;

6 }

7 this.resumeGame(player);

8 } else if (message.type === ’pass’) {

9 this.client.receivePass();

10 } else if (message.type === ’phase’) {

11 this.client.setDeadStones(message.deadStones);

12 } else if (message.type === ’move’) {

13 let moveNo = this.client.moveNumber();

14 let moves = this.Game.currentGame.moves;

15
16 //replay moves with the right order and valid players

17 for(let i=moves; (typeof moves[moveNo] !== ’undefined’)

18 && (i <= (moves.length-1))

19 && (move.pk === this.Game.currentGame.players.one

20 || move.pk === this.Game.currentGame.players.two)

21 ;i++) {

22 let move = moves[moveNo];

23 this.client._game.playAt(move.y, move.x);

24 }

25 }

26 }

4.4. Smart contract 55

4.4 Smart contract

The implementation of a real working smart contract was the biggest
challenge in this application as there are not many readily imple-
mented samples of this concept.

Let’s take a closer look at the transactions. Besides value, des-
tination address and the script part that unlocks the outputs, there
is also the nLockTime and a sequence bit. In any normal transaction,
the lock time is zero and the sequence is set to UINT_MAX, but for
smart contracts, these two flags can be used alongside the multisig
transactions. By setting the sequence bit to zero the transaction can
be submitted with new values until the nLockTime is reached. There
is also another flag called SIGHASH that defines how the outputs can
be changed:

• SIGHASH_ALL: "I agree to put my money in, if everyone puts
their money in and the outputs are this" [Bit16c]

• SIGHASH_NONE: "I agree to put my money in, as long as ev-
eryone puts their money in, but I don’t care what’s done with
the output" [Bit16c]

• SIGHASH_SINGLE: "I agree, as long as my output is what I
want; I don’t care about the others" [Bit16c]

With those options, two different approaches can be used to create
smart contracts between two persons. Either a transaction is passed
outside of the Blockchain to the other person in an incomplete form
and the second person completes it, or two transactions are used.
The double transaction model has some limitations and is later ex-
plained in the Lightning Network chapter 5.2.2.

For the implemented game I have used a multisig address that
uses a 2 of 3 multisig escrows approach. First, the creator of a new
game generates a gaming address and sends their deposit to that ad-
dress. They fully owns this address and can withdraw funds from it
at any time, which would be a cancellation of the game. Then, when
the second player joins, they have all information necessary to create
the multisig address. The game master key is used as a third per-
son involved. This guarantees both players to have an escrow-like
service if something goes wrong. Next, their latest wallet address
and the latest wallet address from the creator of the game are used.

56 Chapter 4. Implementation

Those three keys are always identical between those two players and
out of identical keys there can be no randomized payment address.
Because of this, it adds the game address that was randomly gener-
ated by player one to the now 3 of 4 multisig address. Two of those
keys are controlled by player one, one by player two and one by the
creator of this application as a fallback option. After such address is
created, they deposits the same amount that player one has put to
the gaming address. Player one then moves the funds from this to
the multisig address and the game can start.

When the game ends, both players must sign the transaction that
pays the winner. Player one has to sign with their two keys and
provide the raw, half signed transaction to player two. They then
use their private wallet key to finalize the transaction and submit it
to the network. When player one or two refuse to sign the address,
the master game key can be used as a security fallback. The owner
of this master key then would have to look at the game and function
as a judge to pay the right player.

Because this model utilizes fixed addresses and the fallback of let-
ting player one own two of those keys, it would be mandatory to let
them sign the end transaction. This can be fixed by forcing player
one to generate a transaction that sets player two as the winner with
a nLockTime somewhere in the future. If there’s no response during
that time, player two automatically wins. If player two does not re-
spond, then the escrow mediator can jump in and fix that transaction
with player one. Another way to make the signing part more reason-
able for any of the losing players would be to not let the winner get
100% of the pot. If any amount still goes back to both players, there
is no intention to manipulate the game code and in contradiction to
always sign the transaction even if the match is lost.

57

Chapter 5

Results, problems and future
lookouts

In the beginning of this thesis, the ambitious goal was to imple-
ment different methods to communicate over the Blockchain. I ex-
plored theoretical technologies such as Lightning Network, Root-
stock, Ethereum, smart contracts and others in the desired tools for
comparison. Since most of those tools were still only abstract con-
cepts or still under development, the hope was that they would be
available for testing in the middle of 2016, but in reality another prob-
lem with scaling the Blockchain to allow more transactions was slow-
ing down the development of such techniques. This forced the de-
velopment of this thesis to focus on already existing techniques, such
as the OP_RETURN opcode, something that lead to problems with
communicating the smart contracts and also, made the game moves
quite expensive.

5.1 Problems

5.1.1 Endgame smart contract

The endgame is not yet implemented into the game because one
problem is the part where player one has to pass the half signed
transaction to player two. This is required by the multisig protocol
and thus, an issue, because the game should not release the iden-
tity of both players to each other in form of the IP address or similar
due to security and anonymity reasons. (One player could DDoS the
other if they have their IP address, and so prevent them from do-
ing further moves) First I thought to put this half signed transaction
also to the Blockchain OP_RETURN data, but then I noticed that an

58 Chapter 5. Results, problems and future lookouts

unsigned transaction is 800 bytes large, while in one OP_RETURN,
only 83 bytes are available.

I figured out, that there can be various possibilities to solve that
issue:

• Give out the IP and use peerJS: With that library, two browser
instances can communicate with each other using a WebRTC
connection, but this would break the anonymity of both play-
ers.

• Retain anonymity and split the transaction to many smaller
chunks in the OP_RETURN move transactions: This would
need about ten transactions and ten times the fee to be paid.
It could either happen in the end of a game or the gameSer-
vice could create two different transactions, each defining one
player as the winner. Then, it could fill the open bytes in the
OP_RETURN when both players do their moves with chunks
of that transactions, but not the last piece. Finally, at the
end only the winning player would pass the correct remain-
ing piece to the other and let them sign it. This is a promising
approach, but would need at least 20 moves between both play-
ers.

• Use another technology to provide data to a second network,
like the interplanetary file system (IPFS)1: This network is built
similarly to the Blockchain node network, but focuses more on
saving and relaying bigger data between the nodes. It also uses
the merkle tree technology and saves files in form of hashes to
the network. Other users can request those files with the hash
as a name from every other node. A rooting protocol finds the
owner, or all nodes that already have those files, and the node
relays the data. IPFS can be seen as a combination of a web-
server and a merkle tree peer-to-peer network (like Git or Bit-
Torrent, for example). With this approach, both players can put
the half signed transaction in their file system and provide the
required hash after the game is over. This would guarantee
the anonymity of the players to each other whilst allowing less
than 20 moves, but it would introduce another big JavaScript li-
brary to the already large game and the need to open an IP port

1https://ipfs.io/

5.1. Problems 59

to other nodes. According to the IPFS team, there will be an im-
plementation of IPFS directly to one big browser engine in the
near future. That would make this approach very promising.

• Using Lightning Network. Because this network does not exist
yet, this is explained in the final, future lookouts chapter of this
thesis in 5.2.1. This would maintain the KISS principle: "Keep
it simple, stupid".

5.1.2 Open source tools bitcoin-net and bitcoinjs-lib

With, the implementation some problems arose. The chosen tool,
bitcoin-net [Bel16], caused a lot of issues with the current state of de-
velopment. It is one of the only tools that enable browsers to connect
to Bitcoin nodes, but present in a very early development state. There
is no available documentation and a lot of things have to be picked
out of the source code. The communication with Matt Bell also took
a long round trip time because of the distribution of geographical
locations.

Also, the bitcoinjs-lib [Tho+16] left out some major documentation
parts. There are some well explained examples on how to create and
transmit any raw transaction, but not a single one on how to decode
that back to their addresses and values. Additionally, bitcoin-net and
bitcoinjs-lib use different numbered formats for the representation of
the value fields, and I am certain not many people have heard of the
integer formats BN and INT53.

Overall, using these tools consumed a lot of time, but hope-
fully the implementation in the source code present in this thesis
can, in the future, help other people develop faster using the same.
The source code is public available in my GitHub repository under
https://github.com/Head/gotoshi.

5.1.3 Double scanning

One major problem with the developed protocol is the unique gam-
ing address for each running game. While this type of separation
protects the main gaming address (mgogame...) from being flooded
with every move that is done by any player, it lead to a problem

https://github.com/Head/gotoshi

60 Chapter 5. Results, problems and future lookouts

whilst scanning the Blockchain. The clients, which listen to the head-
erstream from the nodes, receive a lot of blocks at the same time for
the given bloom filters, but because they initially scan only the gam-
ing address, they "see" all existing games, yet not all moves inside
those games. To request the moves for a desired game in the past,
another scan with the added bloom filter for the gaming address
had to be made. In the implementation, the solution is to scan the
Blockchain twice, once to find all games, then to add those to bloom
filters and scan a second time to receive all moves and other actions
made within those games. This would be much easier with a single
centralized instance that holds all moves and can be requested for
any given game, but that would lead to a loss in privacy and would
make the decentralization of the implemented game obsolete.

5.1.4 Back to an API solution?

Another way to access the Blockchain data would be to switch back
to the usage of an API. There are plenty of so called Block explorers
which function as a Blockchain data access engine. Those explorers
save the Blockchain as a standard (relational) database and can be
accessed over a website or through an API to query blocks, transac-
tions, or even single addresses. For instance, it would be possible to
query the master game address to get a list of all transactions that
represent the start, join and end game states. Then, when the user
clicks one of the games, a new query gets executed to request all
moves under that specific game address. This would provide the ad-
vantage of no necessity for the Blockchain to be double scanned. The
Block explorer saves and returns all bygone transactions with that
request.

The logic of how the games are stored in the Blockchain would
remain the same, as well as the process of how the two players insert
their moves or manage the smart contract. For the real time playing,
many APIs also provide a method to hook a websocket to one address
that gets the browser instantly notified when a new transaction ap-
pears. From the outside this would react identically to the imple-
mented version, which takes the same information directly from the
full nodes.

5.2. Future lookout 61

One drawback of this would be the delay when querying the API.
Clicking one game would require the API to be requested before
it could display the previous game data. Whenever that API has a
downtime, it would result in a total outage of the whole game web-
site. Lind also describes this problem in a similar fashion by saying:
"As such, we found that the API could sometimes fail, refusing to
accept requests for temporary periods of time. [...] In other scenar-
ios however, we opted to forward our request to a backup API [...].
When a transaction is broadcast to the network it should ultimately
be relayed to every node in the network. [...] This highlights the dis-
tributed nature of the Bitcoin network." [Lin15, p. 97] This delineates
the strong advantage of the implemented method of directly commu-
nicating with the Bitcoin full node peer-to-peer network. There was
not a single downtime to such network, as the existence of Bitcoin
and direct connection to random nodes, the application has a 100%
uptime, something that no server, API or single centralized structure
can achieve.

5.2 Future lookout

5.2.1 Lightning network

The Lightning Network [PD16] is a conceptual protocol that is built
on top of the Bitcoin Blockchain, currently developed by different
parties 2 3 4. However, to this day it is no more than a prototype
promising to solve many of Bitcoin’s current drawbacks:

• Confirmation time: Because the Bitcoin blocks are mined with a
time-frame of ten minutes (see the chapter about mining 2.3.4),
transactions are only safe to be trusted after at least ten min-
utes. It is even safer after two or more blocks. Currently, most
applications wait for at least one or two blocks, some even six.
Because it is not guaranteed that a transaction is included into
the next block, this can result in waiting times of more than an
hour. For example, a shop that sends out goods to customers
can produce the parcel once it receives the transaction, then

2Lightning Network: https://github.com/ElementsProject/lightning
3Lightning Network Daemon: https://github.com/lightningnetwork/lnd
4Thunder Network: https://github.com/blockchain/thunder

62 Chapter 5. Results, problems and future lookouts

check it again after one hour before it is sent out to mail. For
any online business, the rights to access the application or ser-
vice can be revoked after one hour if the application notices a
double spent or any issue with that transaction, but for a digi-
tal download or any other form of irreversible transfer, this just
requires that waiting time.

Transactions in the Lightning Network should be transmitted
and trusted instantly and atomically. This could enable point of
sale terminals or anything where transferences need real time
confirmations.

• Scalability: Blocks in the Bitcoin protocol are hard coded to a
maximum size of 1MB. Changing this would require a hard
fork of the whole network, a financial risk that is not yet justi-
fied. Also, many undeveloped countries like China have a big
interest in small blocks because of slow Internet connections.
Bigger blocks would result in longer download times after each
new block is found anywhere in the world and the next block
relays on top of that. The additional time is a possible finan-
cial loss to miners. Many mining servers today are located in
China.

At the current rate, with one 1MB big block each ten minutes
and a typical transaction size of 226 bytes [21.16b], this results
in:

1 MB

226 bytes
= 4425 transactions per block (5.1)

4425 transactions

10 minutes
=

7.36 transactions

s
(5.2)

Just seven transactions per second are alarmingly low for a
global financial network, and today all mined blocks are full,
which raises the transaction fees. The miners earn those fees
and choose the transaction with the best fee-byte ratio.

With Lightning, many transactions are taken out of the Block-
chain system and added at the start or end of each session.
This would transform the Bitcoin Blockchain from a currency
to a settlement layer network. For example, the total value of

5.2. Future lookout 63

someone’s bank account is in Bitcoins stored in the Blockchain.
Once money is taken out of that system, they would send a
transaction from their big account to buy a coffee. With Light-
ning in between this would result in a closer to reality scenario
with cash. One transaction on the Blockchain would be made
to the Lightning "wallet" with a smaller amount, then this wal-
let would be used to buy daily goods and transfer funds back
and forth between different persons or machines. Only after
this wallet is empty or the receiving party needs those stored
back to the Blockchain, the session would be closed, resulting
in a second Blockchain transaction.

• Micro Payments: Even though Bitcoin enables transactions
with the value of just one Satoshi (or 0.00000001B), the min-
ers demand a fee to add this transaction to the blocks. Because
of the previous issue with the full blocks, this fee is currently at
five to ten cents.

Lightning Network would enable Micro Payment ideas. For in-
stance, removing ads on websites in real time by paying a small
fee on each visit. Another example could be to pay a small
amount to request the permission to read a full article. These
fees could be much lower and paid faster, while at the same
time still more valuable for the website owner than any other
payment model.

Technical Lightning Network works in a system similar to the smart
contract implemented in the GO game. Both parties create a multisig
channel where they store funds, then they agree on spending funds
out of this channel by both signing transactions with their private
keys. The balance is then updated by both parties by using that dou-
ble signed transaction, but is not yet transmitted to the Blockchain.
Whenever a new transaction is made, the old one gets updated and
again signed by both parties, invalidating the previous one. This con-
cept is enlarged to many different parties in a form of a peer-to-peer
mesh network: Each node makes smart contracts with others and
transfer funds only between the directly connected ones. This makes
use of the well known theory of six connections between friends and
their friends. Everybody in the world can connect to anyone with
only six people in between. For example, if Alice wishes to trade with

64 Chapter 5. Results, problems and future lookouts

Bob, she uses her first, well known contact person, while he uses his
next and so on. See Fig 5.1, x has a smart contract to w and w to v and
z, but only the funding transactions are saved to the Blockchain. The
latest development from September 18, 2016 is a working routing
protocol, named flare [Pri+16], between 2500 simulated AWS nodes
which were able to find a route in under 0.5 seconds for 80% of all
tested routes5.

FIGURE 5.1: smart contracts in the Lighning Network

Source: [Pri+16]

Both parties together can open or close a channel at any time and
transmit the signed transaction back to the Blockchain, but when
one member tries to close the channel, a timeout penalty with a
Blockchain feature called nLockTime appears. This feature saves the
transaction to the Blockchain, but it is marked as unspendable until a
given future time, measured in blocks. This gives the other party the
time to fix that transaction in case something goes wrong. For exam-
ple, Alice and Bob have an open channel with 1B value, both spend
0.5B on chain. Then, Alice transfers 0.3B to Bob and signs this trans-
action off chain (only in the Lightning Network). Bob can now trans-
mit this transaction back to the Blockchain. There could have been
thousands other transactions off chain between Alice and Bob. What
happens when Alice then transmits the first transaction that claims
that both parties have 0.5B back to the Blockchain? In this case, the

5https://lists.linuxfoundation.org/pipermail/
lightning-dev/2016-September/000614.html

https://lists.linuxfoundation.org/pipermail/lightning-dev/2016-September/000614.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2016-September/000614.html

5.2. Future lookout 65

transaction has the nTimeLock that delays it for a validation as early
as 3 days. In this time Bob can see that Alice submitted the transac-
tion, this being able to submit all other transactions as well. Because
those have a smaller nLockTime and both parties signed them, they
get validated earlier than Alice’s wrong claim, leaving her transac-
tion to be invalidated by the Blockchain nodes. This simplified ver-
sion should give an impression of how the Lightning Network will
work. In detail, there are more complex algorithms with different
transactions, signatures and lock times. It even has a mutual penalty
system built in that makes the cheating party lose all invested Bit-
coins if the other party submits all corrected signed transactions in
the right order. This gives a financial incentive to both parties only
transmitting the latest transactions.

Lightning Network would make things like the game in this the-
sis work like a charm, but it will be another half a year or more before
it is usable for experiments like this. For a real world project, it will
be at earliest mid till late 2017.

5.2.2 Segregated Witness

One problem why the Lightning Network is delayed that much is
the implementation of a protocol called Segregated Witness (SegWit)
[LLW15]. Primarily, SegWit was invented to reduce the space that
one transaction takes in the block. To recall how transactions are
stored (depicted in chapter 2.3.3), we have the signature and the pub-
lic keys. The main space is used for the signatures. SegWit segregates
the signature part from the transaction part and stores the signatures
in a secondary tree with the same structure as the transaction tree. It
then leaves the signature part in the transaction, empty. This change
has a major impact on how older nodes handle these new transac-
tions. They still process them as the TX ID is unchanged, but they
cannot read the new signature part and thus, handle them as invalid.
That change would need to fork the Bitcoin Blockchain.

Another part of SegWit will be that it fixes an old bug in the Bit-
coin protocol that currently forces the wait for at least one transac-
tion. This fix also enables the function to trust untransmitted chains:

"Two parties, Alice and Bob, may agree to send a certain

66 Chapter 5. Results, problems and future lookouts

amount of Bitcoins to a 2-of-2 multisig output (the "fund-
ing transaction"). Without signing the funding transac-
tion, they may create another transaction, time-locked in
the future, spending the 2-of-2 multisig output to third ac-
count(s) (the "spending transaction"). Alice and Bob will
sign the spending transaction and exchange the signa-
tures. After examining the signatures, they will sign and
commit the funding transaction to the Blockchain. With-
out further action, the spending transaction will be con-
firmed after the lock-time and release the funding accord-
ing to the original contract. It also retains the flexibility
of revoking the original contract before the lock-time by
another spending transaction with shorter lock-time, but
only with mutual-agreement of both parties." [LLW15]

This is a core feature of the new Lightning Network and one rea-
son why it is delayed that much.

Currently, SegWit is implemented in the latest version of the Bit-
coin core node software with the number v0.13.0, but not yet en-
abled. Once a new version comes out, many users will update their
node relatively fast, while older versions extinguish even faster in
case of a critical update. That process can be seen in Fig 5.2.

FIGURE 5.2: smart contracts in the Lighning Network

Source: [21.16a]

67

Chapter 6

Conclusion

6.1 Conclusion

To recall the questions from chapter 1 we have seen many exam-
ples how to use the Blockchain technology and the smart contracts in
practical examples. Some are already existing, like the Namecoin do-
main system and some are just concepts like DRM, rental of physical
goods or charging cars with machine to machine communications.

Also this game, as a proof of concept, was able to become imple-
mented in the given time period. It is playable without leaking the
players identity and is so far, the first implementation of a peer-to-
peer game without any server or direct connection that I am aware
of.

Looking at the questions from a developing point of view it was
very difficult to program against a "database" that has this many
stages for receiving data. More or less, the clients have to maintain a
complete copy of the data until it decides that it has all the relevant
information to continue processing. But, on the other side it makes
both processes, the live and the delayed one, possible with the same
backend technology. In most applications this is done with different
technologies such as socket connections for live data, message queues for
a temporary storage, like in the mempool, and databases for the final
storage, like in the Blockchain part.

68 Chapter 6. Conclusion

6.2 Final thoughts

Overall, the whole Bitcoin and Blockchain technologies are still very
young. Many concepts are just ideas not yet forged into software,
but the community behind Bitcoin is strong and the development is
increasingly improving. It enables concepts that were yet not possi-
ble, like real distributed smart contracts, or the DAO from chapter
2.4.6.

For further research, waiting for the Lightning Network and re-
evaluating makes sense if the product is in need of communicating a
lot between two or many persons. The fees will be much smaller than
when using OP_RETURN and the overall communication would im-
prove a lot.

Smart contracts based on the Blockchain technology are a very
powerful tool, but only make real sense when the financial instru-
ment behind cryptocurrencies is also used and all needed data is
saved and accessible on-chain. That may be with Bitcoin, Ethereum,
Litecoin itself, or with any other altcoin that is not influenced by mar-
ket volatility that much. For instance, this could be a special coin
with a closed Blockchain. Its coins value could represent the user’s
Fiat money and is secured by law or legislation. The needed on-
chain data could be added to the chain by extending its source code
or added from any trustworthy, private agent.

The implementation of the game was a really challenging project
that showed me how much is possible and how young the technol-
ogy still is. Given the fact that some things are not yet possible, or just
way to complicated, leaves this game just as a sample implementa-
tion and not really usable by the public. Maybe with Lightning Net-
work some parts can still be reused to make the game worthwhile
enough to be readily developed and presented to a bigger audience.

Overall, the world of Bitcoin is fascinating enough on its own, but
Blockchain and Lightning Network add a new layer of fascination to
me. This technology will open possibilities that were not available
in both worlds of information technology and finance. An issue may
be, that many people will struggle with understanding those new
concepts. This can be, in my opinion, one of the core problems that
hinders this technology to become mainstream. It is simply too com-
plicated to understand how things work, but also how to implement

6.2. Final thoughts 69

them to justify its use in a mass scale.
Finally, a project like IPFS can make major parties benefit from

cost saving of bandwidth in the future, and so can revolutionizing
the Internet in its current form of servers and cloud services. Bitcoin
could do the same to money, payment systems and most of the finan-
cial world. With Blockchain and Lightning Network as a new form
of decentralized, permanent data storage and a distributed, anony-
mous peer-to-peer protocol, not only for "the coin", but also for many
other types of applications and as the basis for smart contracts.

71

Bibliography

[21.16a] 21.co. Bitcoin node charts. 2016. URL: https://bitnodes.
21.co/dashboard/?days=365 (visited on 09/22/2016).

[21.16b] 21.co. PREDICTING BITCOIN FEES FOR TRANSACTIONS.
2016. URL: https://bitcoinfees.21.co/ (visited on
09/20/2016).

[Ant14] A.M. Antonopoulos. Mastering Bitcoin: Unlocking Digital
Cryptocurrencies. O’Reilly Media, 2014. ISBN: 9781491921982.
URL: https : / / books . google . de / books ? id =
k3qrBQAAQBAJ.

[BD16] juris GmbH Juristisches Informationssystem für die Bun-
desrepublik Deutschland. Staatsvertrag zum Glücksspiel-
wesen in Deutschland. 2016. URL: http://www.fst-
ev.org/fileadmin/pdf/gesetze/Gesetz_2008-

01- 03_Gl%C3%BCcksspielstaatsvertrag.pdf

(visited on 09/20/2016).

[Bel16] Matt Bell. bitcoin-net. 2016. URL: https : / / github .
com/mappum/bitcoin-net (visited on 09/20/2016).

[Bit16a] BitcoinWiki. Technical background of version 1 Bitcoin ad-
dresses. 2016. URL: https://en.bitcoin.it/wiki/
Technical_background_of_version_1_Bitcoin_

addresses (visited on 09/20/2016).

[Bit16b] BitcoinWiki. Testnet. 2016. URL: https://en.bitcoin.
it/wiki/Testnet (visited on 09/20/2016).

[Bit16c] BitcoinWiki. Testnet. 2016. URL: https://en.bitcoin.
it/wiki/Contract (visited on 09/20/2016).

[Bit16d] BitcoinWiki. Thin Client Security. 2016. URL: https://
en.bitcoin.it/wiki/Thin_Client_Security

(visited on 09/20/2016).

https://bitnodes.21.co/dashboard/?days=365
https://bitnodes.21.co/dashboard/?days=365
https://bitcoinfees.21.co/
https://books.google.de/books?id=k3qrBQAAQBAJ
https://books.google.de/books?id=k3qrBQAAQBAJ
http://www.fst-ev.org/fileadmin/pdf/gesetze/Gesetz_2008-01-03_Gl%C3%BCcksspielstaatsvertrag.pdf
http://www.fst-ev.org/fileadmin/pdf/gesetze/Gesetz_2008-01-03_Gl%C3%BCcksspielstaatsvertrag.pdf
http://www.fst-ev.org/fileadmin/pdf/gesetze/Gesetz_2008-01-03_Gl%C3%BCcksspielstaatsvertrag.pdf
https://github.com/mappum/bitcoin-net
https://github.com/mappum/bitcoin-net
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Testnet
https://en.bitcoin.it/wiki/Testnet
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Thin_Client_Security
https://en.bitcoin.it/wiki/Thin_Client_Security

72 BIBLIOGRAPHY

[Bit16e] Bitmaintech. Bitmaintech ASIC miner. 2016. URL: https:
//www.bitmaintech.com/product.htm (visited on
09/20/2016).

[Coi16] CoinMarketCap. Crypto-Currency Market Capitalizations.
2016. URL: https://coinmarketcap.com/ (visited
on 09/20/2016).

[Har16] John Hardy. What on earth is a Merkle tree? Part 2: I get
more technical, but hopefully all becomes clearer. 2016. URL:
https://seebitcoin.com/2016/09/what-on-

earth - is - a - merkle - tree - part - 2 - i - get -

more-technical-but-hopefully-all-becomes-

clearer/.

[Hub88] Bernardo A. Huberman. “The Agoric Papers”. In: The
Ecology of Computation. Ed. by editor. Studies in com-
puter science and artificial intelligence. North-Holland:
University of Michigan, 1988, p. 342. ISBN: 0444703756,
9780444703750. URL: http://e- drexler.com/d/
09/00/AgoricsPapers/agoricpapers.html (vis-
ited on 09/20/2016).

[Laa+16] Wladimir J. van der Laan et al. Bitcoin Core integration.
2016. URL: https://github.com/bitcoin/bitcoin
(visited on 09/20/2016).

[Lim16] DeepMind Technologies Limited. AlphaGo. 2016. URL: https:
//deepmind.com/research/alphago/.

[Lin15] Joshua David Lind. “Betting on the Bitcoin Blockchain”.
Master of Engineering in Computing. Imperial College
London, 2015.

[LLW15] Eric Lombrozo, Johnson Lau, and Pieter Wuille. Segre-
gated Witness (Consensus layer). GitHub, 2015. URL: https:
//github.com/bitcoin/bips/blob/master/

bip-0141.mediawiki.

[Mol02] R.A. Mollin. RSA and Public-Key Cryptography. Discrete
Mathematics and Its Applications. CRC Press, 2002. ISBN:
9781420035247. URL: https://books.google.de/
books?id=owrOBQAAQBAJ.

https://www.bitmaintech.com/product.htm
https://www.bitmaintech.com/product.htm
https://coinmarketcap.com/
https://seebitcoin.com/2016/09/what-on-earth-is-a-merkle-tree-part-2-i-get-more-technical-but-hopefully-all-becomes-clearer/
https://seebitcoin.com/2016/09/what-on-earth-is-a-merkle-tree-part-2-i-get-more-technical-but-hopefully-all-becomes-clearer/
https://seebitcoin.com/2016/09/what-on-earth-is-a-merkle-tree-part-2-i-get-more-technical-but-hopefully-all-becomes-clearer/
https://seebitcoin.com/2016/09/what-on-earth-is-a-merkle-tree-part-2-i-get-more-technical-but-hopefully-all-becomes-clearer/
http://e-drexler.com/d/09/00/AgoricsPapers/agoricpapers.html
http://e-drexler.com/d/09/00/AgoricsPapers/agoricpapers.html
https://github.com/bitcoin/bitcoin
https://deepmind.com/research/alphago/
https://deepmind.com/research/alphago/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://books.google.de/books?id=owrOBQAAQBAJ
https://books.google.de/books?id=owrOBQAAQBAJ

BIBLIOGRAPHY 73

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. 2008. URL: https://bitcoin.org/bitcoin.
pdf (visited on 09/20/2016).

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning
Network: Scalable Off-Chain Instant Payments. White Paper.
institution, 2016. URL: https://lightning.network/
lightning-network-paper.pdf (visited on 09/20/2016).

[Pre16] Adam Prescott. tenuki.js. 2016. URL: https://github.
com/aprescott/tenuki.js (visited on 09/20/2016).

[Pri+16] Pavel Prihodko et al. Flare: An Approach to Routingin Light-
ning Network. White Paper. institution, 2016. URL: http:
/ / bitfury . com / content / 5 - white - papers -

research/whitepaper_flare_an_approach_to_

routing_in_lightning_network_7_7_2016.pdf.

[Sob+08] T. Sobh et al. Novel Algorithms and Techniques in Telecom-
munications, Automation and Industrial Electronics. Springer
Netherlands, 2008. ISBN: 9781402087370. URL: https://
books.google.de/books?id=z8nmMkUFqdwC.

[Tho+16] Stefan Thomas et al. BitcoinJS. 2016. URL: https : / /
bitcoinjs.org/.

[Tro16] John Tromp. Number of legal Go positions. 2016. URL: http:
//tromp.github.io/go/legal.html.

[Wal16] Arran Walker. Bitcoin private key database. 2016. URL: http:
//directory.io/ (visited on 09/20/2016).

[Woo14] Dr. Gavin Wood. Ethereum: A decentralised generalised trans-
action ledger. 2014. URL: http://gavwood.com/Paper.
pdf (visited on 09/20/2016).

[Wui12] Pieter Wuille. Hierarchical Deterministic Wallets. 2012. URL:
https://en.bitcoin.it/wiki/BIP_0032 (visited
on 09/20/2016).

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/aprescott/tenuki.js
https://github.com/aprescott/tenuki.js
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://books.google.de/books?id=z8nmMkUFqdwC
https://books.google.de/books?id=z8nmMkUFqdwC
https://bitcoinjs.org/
https://bitcoinjs.org/
http://tromp.github.io/go/legal.html
http://tromp.github.io/go/legal.html
http://directory.io/
http://directory.io/
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf
https://en.bitcoin.it/wiki/BIP_0032

	Eidesstattliche Erklärung
	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Purpose
	Structure

	Basics
	Important cryptographic basics
	Hashing
	Public key encryption

	What is Bitcoin?
	Properties of money
	From Bitcoin to the Blockchain database

	Technical background of Bitcoin
	Bitcoin wallets and addresses
	Multisig Addresses
	Transactions and nodes
	Mining
	Summary of the Bitcoin workflow

	What is the Blockchain?
	Data in the Blockchain
	Different types of Blockchains/altcoins
	Closed Blockchain
	Open Blockchain
	Namecoin
	Ethereum

	Smart contracts
	Practical example 1: .bit domain in Namecoin
	Practical example 2: lent out photo equipment
	Nowadays interest in smart contracts

	Game presentation and user flow
	A game of GO
	Visiting the website
	Game start
	Transmitting moves
	Listening to live moves
	Replaying a game
	End of game

	Legal aspects

	Implementation
	Application structure
	Angular communication between services
	Client communication with nodes

	Different communication stages
	Live
	Blockchain
	Mempool

	Description of program code
	bitcoinNode
	walletService
	gameService
	gameController

	Smart contract

	Results, problems and future lookouts
	Problems
	Endgame smart contract
	Open source tools bitcoin-net and bitcoinjs-lib
	Double scanning
	Back to an API solution?

	Future lookout
	Lightning network
	Segregated Witness

	Conclusion
	Conclusion
	Final thoughts

